-
1
-
-
0141607824
-
Latent dirichlet allocation
-
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent Dirichlet allocation. JMLR 3:993-1022.
-
(2003)
JMLR
, vol.3
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
2
-
-
84863381525
-
Reading tea leaves: How humans interpret topic models
-
Boyd-Graber, J.; Chang, J.; Gerrish, S.; Wang, C.; and Blei, D. 2009. Reading tea leaves: How humans interpret topic models. In NIPS.
-
(2009)
NIPS
-
-
Boyd-Graber, J.1
Chang, J.2
Gerrish, S.3
Wang, C.4
Blei, D.5
-
3
-
-
84859093122
-
Discovering sociolinguistic associations with structured sparsity
-
Eisenstein, J.; Smith, N. A.; and Xing, E. P. 2011. Discovering sociolinguistic associations with structured sparsity. In ACL.
-
(2011)
ACL
-
-
Eisenstein, J.1
Smith, N.A.2
Xing, E.P.3
-
4
-
-
84870275829
-
No, you cannot predict elections with twitter
-
Gayo-Avello, D. 2012. No, you cannot predict elections with twitter. IEEE Internet Computing 16(6):91-94.
-
(2012)
IEEE Internet Computing
, vol.16
, Issue.6
, pp. 91-94
-
-
Gayo-Avello, D.1
-
5
-
-
80053439201
-
Predicting legislative roll calls from text
-
Gerrish, S., and Blei, D. 2011. Predicting legislative roll calls from text. In Proc. of ICML.
-
(2011)
Proc. of ICML
-
-
Gerrish, S.1
Blei, D.2
-
7
-
-
84873914020
-
How words and money cultivate a personal vote: The effect of legislator credit claiming on constituent credit allocation
-
Grimmer, J.; Messing, S.; and Westwood, S. 2012. How words and money cultivate a personal vote: The effect of legislator credit claiming on constituent credit allocation. American Political Science Review 106(4).
-
(2012)
American Political Science Review
, vol.106
, Issue.4
-
-
Grimmer, J.1
Messing, S.2
Westwood, S.3
-
8
-
-
77951646429
-
A Bayesian hierarchical topic model for political texts: Measuring expressed agendas in senate press releases
-
Grimmer, J. 2010. A Bayesian hierarchical topic model for political texts: Measuring expressed agendas in Senate press releases. Political Analysis 18(1).
-
(2010)
Political Analysis
, vol.18
, Issue.1
-
-
Grimmer, J.1
-
9
-
-
84860196341
-
Why the pirate party won the german election of 2009 or the trouble with predictions: A response to tumasjan et al
-
Jungherr, A.; Jürgens, P.; and Schoen, H. 2012. Why the pirate party won the german election of 2009 or the trouble with predictions: A response to Tumasjan et al. Social Science Computer Review 30(2):229-234.
-
(2012)
Social Science Computer Review
, vol.30
, Issue.2
, pp. 229-234
-
-
Jungherr, A.1
Jürgens, P.2
Schoen, H.3
-
10
-
-
84876177471
-
The emergence of conventions in online social networks
-
Kooti, F.; Yang, H.; Cha, M.; Gummadi, P. K.; and Mason, W. A. 2012. The emergence of conventions in online social networks. In ICWSM.
-
(2012)
ICWSM
-
-
Kooti, F.1
Yang, H.2
Cha, M.3
Gummadi, P.K.4
Mason, W.A.5
-
11
-
-
84890653327
-
Information contagion: An empirical study of the spread of news on digg and twitter social networks
-
Lerman, K., and Ghosh, R. 2010. Information contagion: An empirical study of the spread of news on Digg and Twitter social networks. In ICWSM.
-
(2010)
ICWSM
-
-
Lerman, K.1
Ghosh, R.2
-
13
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
Nigam, K.; McCallum, A. K.; Thrun, S.; and Mitchell, T. 1999. Text classification from labeled and unlabeled documents using EM. Machine Learning 39:103-134.
-
(1999)
Machine Learning
, vol.39
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
15
-
-
80053229814
-
You are what you tweet: Analyzing twitter for public health
-
Paul, M., and Dredze, M. 2010. You are what you tweet: Analyzing Twitter for public health. In ICWSM.
-
(2010)
ICWSM
-
-
Paul, M.1
Dredze, M.2
-
16
-
-
54449101446
-
An automated method of topic-coding legislative speech over time with application to the 105th-108th U.S. Senate
-
Quinn, K. M.; Monroe, B. L.; Colaresi, M.; Crespin, M. H.; and Radev, D. R. 2006. An automated method of topic-coding legislative speech over time with application to the 105th-108th U.S. Senate. Midwest Political Science Association Meeting.
-
(2006)
Midwest Political Science Association Meeting
-
-
Quinn, K.M.1
Monroe, B.L.2
Colaresi, M.3
Crespin, M.H.4
Radev, D.R.5
-
17
-
-
77954571408
-
Earthquake shakes twitter users: Real-time event detection by social sensors
-
Sakaki, T.; Okazaki, M.; and Matsuo, Y. 2010. Earthquake shakes Twitter users: real-time event detection by social sensors. In WWW.
-
(2010)
WWW
-
-
Sakaki, T.1
Okazaki, M.2
Matsuo, Y.3
-
18
-
-
84890668120
-
Predicting elections with twitter: What 140 characters reveal about political sentiment
-
Tumasjan, A.; Sprenger, T. O.; Sandner, P. G.; and Welpe, I. M. 2010. Predicting elections with Twitter: What 140 characters reveal about political sentiment. In ICWSM.
-
(2010)
ICWSM
-
-
Tumasjan, A.1
Sprenger, T.O.2
Sandner, P.G.3
Welpe, I.M.4
-
19
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Wainwright, M. J., and Jordan, M. I. 2008. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning 1(1-2):1-305.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
20
-
-
84900427933
-
Improving spatial models of political ideology by incorporating social network data
-
White, J. M., and Counts, S. 2012. Improving spatial models of political ideology by incorporating social network data. In Workshop on Information in Networks.
-
(2012)
Workshop on Information in Networks
-
-
White, J.M.1
Counts, S.2
-
21
-
-
84926139013
-
Textual predictors of bill survival in congressional committees
-
Yano, T.; Smith, N. A.; and Wilkerson, J. D. 2012. Textual predictors of bill survival in congressional committees. In NAACL.
-
(2012)
NAACL
-
-
Yano, T.1
Smith, N.A.2
Wilkerson, J.D.3
|