-
1
-
-
84873201087
-
Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook
-
Li Z., Luo W., Zhang M., Feng J., Zou Z. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6:347-370.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 347-370
-
-
Li, Z.1
Luo, W.2
Zhang, M.3
Feng, J.4
Zou, Z.5
-
2
-
-
78649947149
-
Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photo-fuel cell: a review of a re-emerging research field
-
Lianos P. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photo-fuel cell: a review of a re-emerging research field. J. Hazard. Mater. 2011, 185:575-590.
-
(2011)
J. Hazard. Mater.
, vol.185
, pp. 575-590
-
-
Lianos, P.1
-
3
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238:37-38.
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
-
4
-
-
84862867928
-
2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating
-
2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano 2012, 6:5060-5069.
-
(2012)
ACS Nano
, vol.6
, pp. 5060-5069
-
-
Hwang, Y.J.1
Hahn, C.2
Liu, B.3
Yang, P.4
-
5
-
-
70350511103
-
Potential applications of hierarchical branching nanowires in solar energy conversion
-
Bierman M.J., Jin S. Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2009, 2:1050-1059.
-
(2009)
Energy Environ. Sci.
, vol.2
, pp. 1050-1059
-
-
Bierman, M.J.1
Jin, S.2
-
6
-
-
80755159106
-
2 nanorods for photoelectrochemical hydrogen production
-
2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011, 11:4978-4984.
-
(2011)
Nano Lett.
, vol.11
, pp. 4978-4984
-
-
Cho, I.S.1
Chen, Z.2
Forman, A.J.3
Kim, D.R.4
Rao, P.M.5
Jaramillo, T.F.6
Zheng, X.7
-
7
-
-
84863296396
-
2 shell nanowires on stainless steel mesh for flexible photoelectrochemical cells
-
2 shell nanowires on stainless steel mesh for flexible photoelectrochemical cells. Appl. Phys. Lett. 2012, 100:084104.
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 084104
-
-
Hong Noh, J.1
Ding, B.2
Han, H.S.3
Seong Kim, J.4
Hoon Park, J.5
Baek Park, S.6
Suk Jung, H.7
Lee, J.-K.8
Sun Hong, K.9
-
8
-
-
61649100363
-
2 core/shell nanowire arrays with enhanced photoactivity
-
2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 2008, 9:410-415.
-
(2008)
Nano Lett.
, vol.9
, pp. 410-415
-
-
Hwang, Y.J.1
Boukai, A.2
Yang, P.3
-
9
-
-
80051612362
-
Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes
-
Shi J., Hara Y., Sun C., Anderson M.A., Wang X. Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. Nano Lett. 2011, 11:3413-3419.
-
(2011)
Nano Lett.
, vol.11
, pp. 3413-3419
-
-
Shi, J.1
Hara, Y.2
Sun, C.3
Anderson, M.A.4
Wang, X.5
-
10
-
-
84862267713
-
2 generation
-
2 generation. Nanoscale 2012, 4:1515-1521.
-
(2012)
Nanoscale
, vol.4
, pp. 1515-1521
-
-
Sun, K.1
Jing, Y.2
Li, C.3
Zhang, X.4
Aguinaldo, R.5
Kargar, A.6
Madsen, K.7
Banu, K.8
Zhou, Y.9
Bando, Y.10
Liu, Z.11
Wang, D.12
-
11
-
-
79960245034
-
2 nanowire arrays for photoelectrochemical water splitting
-
2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11:3026-3033.
-
(2011)
Nano Lett.
, vol.11
, pp. 3026-3033
-
-
Wang, G.1
Wang, H.2
Ling, Y.3
Tang, Y.4
Yang, X.5
Fitzmorris, R.C.6
Wang, C.7
Zhang, J.Z.8
Li, Y.9
-
12
-
-
84887452137
-
3/CdS core/shell nanowire arrays for photoanodes toward enhanced charge separation and transport under visible light
-
3/CdS core/shell nanowire arrays for photoanodes toward enhanced charge separation and transport under visible light. Nanoscale 2013, 5:11933-11939.
-
(2013)
Nanoscale
, vol.5
, pp. 11933-11939
-
-
Li, H.1
Zhou, Y.2
Chen, L.3
Luo, W.4
Xu, Q.5
Wang, X.6
Xiao, M.7
Zou, Z.8
-
13
-
-
77956271781
-
Recent advances in nanoelectrode architecture for photochemical hydrogen production
-
Park H.G., Holt J.K. Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energy Environ. Sci. 2010, 3:1028-1036.
-
(2010)
Energy Environ. Sci.
, vol.3
, pp. 1028-1036
-
-
Park, H.G.1
Holt, J.K.2
-
14
-
-
77955309107
-
3 heterostructure nanotube arrays for improved solar energy conversion efficiency
-
3 heterostructure nanotube arrays for improved solar energy conversion efficiency. Electrochem. Commun. 2010, 12:1124-1128.
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 1124-1128
-
-
Zhang, J.1
Tang, C.2
Bang, J.H.3
-
19
-
-
79952598328
-
2 nanofiber heterostructures with high photocatalytic activity
-
2 nanofiber heterostructures with high photocatalytic activity. Langmuir 2011, 27:2946-2952.
-
(2011)
Langmuir
, vol.27
, pp. 2946-2952
-
-
Cao, T.1
Li, Y.2
Wang, C.3
Shao, C.4
Liu, Y.5
-
23
-
-
75749092622
-
3 heterostructure nanotube arrays for improved photoelectrochemical performance
-
3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 2009, 4:387-395.
-
(2009)
ACS Nano
, vol.4
, pp. 387-395
-
-
Zhang, J.1
Bang, J.H.2
Tang, C.3
Kamat, P.V.4
-
25
-
-
78449289476
-
Solar water splitting cells
-
Walter M.G., Warren E.L., McKone J.R., Boettcher S.W., Mi Q., Santori E.A., Lewis N.S. Solar water splitting cells. Chem. Rev. 2010, 110:6446-6473.
-
(2010)
Chem. Rev.
, vol.110
, pp. 6446-6473
-
-
Walter, M.G.1
Warren, E.L.2
McKone, J.R.3
Boettcher, S.W.4
Mi, Q.5
Santori, E.A.6
Lewis, N.S.7
-
26
-
-
84865607417
-
Nanoscale strontium titanate photocatalysts for overall water splitting
-
Townsend T.K., Browning N.D., Osterloh F.E. Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 2012, 6:7420-7426.
-
(2012)
ACS Nano
, vol.6
, pp. 7420-7426
-
-
Townsend, T.K.1
Browning, N.D.2
Osterloh, F.E.3
-
28
-
-
67649990207
-
2 powders in decomposition of methyl orange
-
2 powders in decomposition of methyl orange. Int. J. Environ. Res. 2009, 3:57-60.
-
(2009)
Int. J. Environ. Res.
, vol.3
, pp. 57-60
-
-
He, H.1
-
30
-
-
84920393078
-
2 heterostructures and their application in photoelectrochemical water splitting
-
2 heterostructures and their application in photoelectrochemical water splitting. Int. J. Hydrogen Energy 2013, 10.1016/j.ijhydene.2013.10.030.
-
(2013)
Int. J. Hydrogen Energy
-
-
Park, S.1
Lee, C.W.2
Cho, I.S.3
Kim, S.4
Park, J.H.5
Kim, H.J.6
Kim, D.-W.7
Lee, S.8
Hong, K.S.9
-
31
-
-
84892488268
-
Surface-area-tuned, quantum-dot-sensitized heterostructured nanoarchitectures for highly efficient photoelectrodes
-
Park S., Kim D., Lee C.W., Seo S.-D., Kim H.J., Han H.S., Hong K.S., Kim D.-W. Surface-area-tuned, quantum-dot-sensitized heterostructured nanoarchitectures for highly efficient photoelectrodes. Nano Res. 2014, 7:144-153.
-
(2014)
Nano Res.
, vol.7
, pp. 144-153
-
-
Park, S.1
Kim, D.2
Lee, C.W.3
Seo, S.-D.4
Kim, H.J.5
Han, H.S.6
Hong, K.S.7
Kim, D.-W.8
-
32
-
-
65249139389
-
3 (M=Ca, Sr, and Ba) perovskite oxides
-
3 (M=Ca, Sr, and Ba) perovskite oxides. J. Phys. Chem. C 2009, 113:4386-4394.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 4386-4394
-
-
Li, Y.1
Gao, X.2
Li, G.3
Pan, G.4
Yan, T.5
Zhu, H.6
-
34
-
-
84867491083
-
2 heteroepitaxial branched nanoarchitectures for Li ion battery electrodes
-
2 heteroepitaxial branched nanoarchitectures for Li ion battery electrodes. J. Phys. Chem. C 2012, 116:21717-21726.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 21717-21726
-
-
Park, S.1
Seo, S.-D.2
Lee, S.3
Seo, S.W.4
Park, K.-S.5
Lee, C.W.6
Kim, D.-W.7
Hong, K.S.8
-
35
-
-
84876704597
-
2
-
2. CrystEngComm 2013, 15:2939-2948.
-
(2013)
CrystEngComm
, vol.15
, pp. 2939-2948
-
-
Park, S.1
Lee, S.2
Seo, S.W.3
Seo, S.-D.4
Lee, C.W.5
Kim, D.H.6
Kim, D.W.7
Hong, K.S.8
-
36
-
-
79953225229
-
3 (M=Ba, Sr, Ca, and Mg) nanostructures
-
3 (M=Ba, Sr, Ca, and Mg) nanostructures. J. Phys. Chem. C 2011, 115:3918-3925.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 3918-3925
-
-
Dong, W.1
Li, B.2
Li, Y.3
Wang, X.4
An, L.5
Li, C.6
Chen, B.7
Wang, G.8
Shi, Z.9
-
37
-
-
33746894753
-
3 spheres
-
3 spheres. J. Phys. Chem. B 2006, 110:13835-13840.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 13835-13840
-
-
Wang, Y.1
Xu, H.2
Wang, X.3
Zhang, X.4
Jia, H.5
Zhang, L.6
Qiu, J.7
-
39
-
-
3242751950
-
Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents
-
Chen H.-I., Chang H.-Y. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids Surf. A 2004, 242:61-69.
-
(2004)
Colloids Surf. A
, vol.242
, pp. 61-69
-
-
Chen, H.-I.1
Chang, H.-Y.2
-
40
-
-
84861665661
-
2/tin-doped indium oxide-based photoelectrode coated with overlayer materials and its photoelectrochemical behavior
-
2/tin-doped indium oxide-based photoelectrode coated with overlayer materials and its photoelectrochemical behavior. J. Nanosci. Nanotechnol. 2012, 12:1390-1394.
-
(2012)
J. Nanosci. Nanotechnol.
, vol.12
, pp. 1390-1394
-
-
Park, S.1
Lee, S.2
Kim, D.3
Lee, C.W.4
Cho, I.-S.5
Hong, K.S.6
-
41
-
-
77949547423
-
2 nanoparticles with uniform morphology and size for efficient photo-energy conversion devices
-
2 nanoparticles with uniform morphology and size for efficient photo-energy conversion devices. Chem. Mater. 2010, 22:1958-1965.
-
(2010)
Chem. Mater.
, vol.22
, pp. 1958-1965
-
-
Lee, S.1
Cho, I.-S.2
Lee, J.H.3
Kim, D.H.4
Kim, D.W.5
Kim, J.Y.6
Shin, H.7
Lee, J.-K.8
Jung, H.S.9
Park, N.-G.10
Kim, K.11
Ko, M.J.12
Hong, K.S.13
-
42
-
-
36248978676
-
2 electrode and its application to a dye-sensitized solar cell
-
2 electrode and its application to a dye-sensitized solar cell. Langmuir 2007, 23:11907-11910.
-
(2007)
Langmuir
, vol.23
, pp. 11907-11910
-
-
Lee, S.1
Kim, J.Y.2
Youn, S.H.3
Park, M.4
Hong, K.S.5
Jung, H.S.6
Lee, J.-K.7
Shin, H.8
-
43
-
-
84855451340
-
2 inverse opals for photoelectrochemical hydrogen generation
-
2 inverse opals for photoelectrochemical hydrogen generation. Small 2012, 8:37-42.
-
(2012)
Small
, vol.8
, pp. 37-42
-
-
Cheng, C.1
Karuturi, S.K.2
Liu, L.3
Liu, J.4
Li, H.5
Su, L.T.6
Tok, A.I.Y.7
Fan, H.J.8
-
45
-
-
0035919629
-
Physical structure and inversion charge at a semiconductor interface with a crystalline oxide
-
McKee R., Walker F., Chisholm M. Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. Science 2001, 293:468-471.
-
(2001)
Science
, vol.293
, pp. 468-471
-
-
McKee, R.1
Walker, F.2
Chisholm, M.3
-
47
-
-
0023399026
-
N-Type SrTiO3 thin films: Electronic processes and photoelectrochemical behavior
-
Campet G., Carrere M., Puprichitkun C., Wen S.Z., Salardenne J., Claverie J. n-Type SrTiO3 thin films: Electronic processes and photoelectrochemical behavior. J. Solid State Chem. 1987, 69:267-273.
-
(1987)
J. Solid State Chem.
, vol.69
, pp. 267-273
-
-
Campet, G.1
Carrere, M.2
Puprichitkun, C.3
Wen, S.Z.4
Salardenne, J.5
Claverie, J.6
-
49
-
-
33748053341
-
Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst
-
Behnajady M.A., Modirshahla N., Hamzavi R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 2006, 133:226-232.
-
(2006)
J. Hazard. Mater.
, vol.133
, pp. 226-232
-
-
Behnajady, M.A.1
Modirshahla, N.2
Hamzavi, R.3
-
50
-
-
84884262339
-
Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell
-
Li J., Li J., Chen Q., Bai J., Zhou B. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell. J. Hazard. Mater. 2013, 262:304-310.
-
(2013)
J. Hazard. Mater.
, vol.262
, pp. 304-310
-
-
Li, J.1
Li, J.2
Chen, Q.3
Bai, J.4
Zhou, B.5
|