메뉴 건너뛰기




Volumn 60, Issue 6, 2014, Pages 2228-2234

Numerical investigation on the number of active surface sites of carbon catalysts in the decomposition of methane

Author keywords

Carbon catalyst; Methane decomposition; Numerical modeling; Reaction kinetics; Surface sites

Indexed keywords

CARBON; HYDROGEN PRODUCTION; METHANE; NUMERICAL MODELS; REACTION KINETICS;

EID: 84899985762     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.14395     Document Type: Article
Times cited : (6)

References (47)
  • 1
    • 11344254687 scopus 로고    scopus 로고
    • From hydrocarbon to hydrogen-carbon to hydrogen economy
    • Muradov NZ, Veziroglu TN. From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energy. 2005;30:225-237.
    • (2005) Int J Hydrogen Energy. , vol.30 , pp. 225-237
    • Muradov, N.Z.1    Veziroglu, T.N.2
  • 3
    • 74849096484 scopus 로고    scopus 로고
    • Hydrogen production by methane decomposition: a review
    • Abbas HF, Wan Daud WMA. Hydrogen production by methane decomposition: a review. Int J Hydrogen Energy. 2010;35:1160-1190.
    • (2010) Int J Hydrogen Energy. , vol.35 , pp. 1160-1190
    • Abbas, H.F.1    Wan Daud, W.M.A.2
  • 4
    • 84855652777 scopus 로고    scopus 로고
    • Green methods for hydrogen production
    • Dincer I. Green methods for hydrogen production. Int J Hydrogen Energy. 2012;37:1954-1971.
    • (2012) Int J Hydrogen Energy. , vol.37 , pp. 1954-1971
    • Dincer, I.1
  • 5
    • 84899964210 scopus 로고    scopus 로고
    • 2-free production of hydrogen from hydrocarbon fuels. In: Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP--, Golden, CO
    • 2-free production of hydrogen from hydrocarbon fuels. In: Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405, Golden, CO, 2002.
    • (2002) , pp. 610-32405
    • Muradov, N.1
  • 7
    • 0032651589 scopus 로고    scopus 로고
    • Fossil fuel decarbonization technology for mitigating global warming
    • Steinberg M. Fossil fuel decarbonization technology for mitigating global warming. Int J Hydrogen Energy. 1999;24:771-777.
    • (1999) Int J Hydrogen Energy. , vol.24 , pp. 771-777
    • Steinberg, M.1
  • 8
    • 34147170102 scopus 로고    scopus 로고
    • Direct carbon fuel cell: fundamentals and recent developments
    • Cao D, Sun Y, Wang G. Direct carbon fuel cell: fundamentals and recent developments. J Power Sources. 2007;167:250-257.
    • (2007) J Power Sources. , vol.167 , pp. 250-257
    • Cao, D.1    Sun, Y.2    Wang, G.3
  • 9
    • 20344380469 scopus 로고    scopus 로고
    • 2 emission: modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles
    • 2 emission: modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles. Int J Hydrogen Energy. 2005;30:1149-1158.
    • (2005) Int J Hydrogen Energy. , vol.30 , pp. 1149-1158
    • Muradov, N.1    Chen, Z.2    Smith, F.3
  • 10
    • 50349091940 scopus 로고    scopus 로고
    • Study of the deactivation mechanism of carbon blacks used in methane decomposition
    • Lazaro MJ, Pinilla JL, Suelves I, Moliner R. Study of the deactivation mechanism of carbon blacks used in methane decomposition. Int J Hydrogen Energy. 2008;33:4104-4111.
    • (2008) Int J Hydrogen Energy. , vol.33 , pp. 4104-4111
    • Lazaro, M.J.1    Pinilla, J.L.2    Suelves, I.3    Moliner, R.4
  • 11
    • 0242391244 scopus 로고    scopus 로고
    • Methane decomposition into hydrogen and carbon nanofibers over supported Pd-Ni catalysts
    • Takenaka S, Shigeta Y, Tanabe E, Otsuka K. Methane decomposition into hydrogen and carbon nanofibers over supported Pd-Ni catalysts. J Catalysis. 2003;220:468-477.
    • (2003) J Catalysis. , vol.220 , pp. 468-477
    • Takenaka, S.1    Shigeta, Y.2    Tanabe, E.3    Otsuka, K.4
  • 12
    • 66149178799 scopus 로고    scopus 로고
    • High-temperature solar methane dissociation in a multitubular cavity-type reactor in the temperature range 1823-2073 K
    • Rodat S, Abanades S, Flamant G. High-temperature solar methane dissociation in a multitubular cavity-type reactor in the temperature range 1823-2073 K. Energy Fuels. 2009;23:2666-2674.
    • (2009) Energy Fuels. , vol.23 , pp. 2666-2674
    • Rodat, S.1    Abanades, S.2    Flamant, G.3
  • 13
    • 0014804612 scopus 로고
    • Carbon formation from methane pyrolysis over some transition metal surfaces-I. Nature and properties of the carbons formed
    • Robertson SD. Carbon formation from methane pyrolysis over some transition metal surfaces-I. Nature and properties of the carbons formed. Carbon. 1970;8:365-368.
    • (1970) Carbon. , vol.8 , pp. 365-368
    • Robertson, S.D.1
  • 14
    • 0002953172 scopus 로고    scopus 로고
    • 2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel
    • 2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel. Energy Fuels. 1998;12:41-48.
    • (1998) Energy Fuels. , vol.12 , pp. 41-48
    • Muradov, N.Z.1
  • 15
    • 0142092185 scopus 로고    scopus 로고
    • Catalysis of methane decomposition over elemental carbon
    • Muradov N. Catalysis of methane decomposition over elemental carbon. Catal Commun. 2001;2:89-94.
    • (2001) Catal Commun. , vol.2 , pp. 89-94
    • Muradov, N.1
  • 16
    • 18844414765 scopus 로고    scopus 로고
    • Catalytic activity of carbons for methane decomposition reaction
    • Muradov N, Smith F, T-Raissi A. Catalytic activity of carbons for methane decomposition reaction. Catal Today. 2005;102-103:225-233.
    • (2005) Catal Today. , vol.102 , Issue.103 , pp. 225-233
    • Muradov, N.1    Smith, F.2    T-Raissi, A.3
  • 17
    • 0035497737 scopus 로고    scopus 로고
    • Hydrogen via methane decomposition: an application for decarbonization of fossil fuels
    • Muradov N. Hydrogen via methane decomposition: an application for decarbonization of fossil fuels. Int J Hydrogen Energy. 2001;26:1165-1175.
    • (2001) Int J Hydrogen Energy. , vol.26 , pp. 1165-1175
    • Muradov, N.1
  • 20
    • 4344614768 scopus 로고    scopus 로고
    • Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst
    • Lee KK, Han GY, Yoon KJ, Lee BK. Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst. Catal Today. 2004;93-95:81-86.
    • (2004) Catal Today. , vol.93 , Issue.95 , pp. 81-86
    • Lee, K.K.1    Han, G.Y.2    Yoon, K.J.3    Lee, B.K.4
  • 21
    • 34249035751 scopus 로고    scopus 로고
    • Catalytic characteristics of various reinforcing carbon blacks in decomposition of methane for hydrogen
    • Ryu BH, Lee SY, Lee DH, Han GY, Lee TJ, Yoon KJ. Catalytic characteristics of various reinforcing carbon blacks in decomposition of methane for hydrogen. Catal Today. 2007;123:303-309.
    • (2007) Catal Today. , vol.123 , pp. 303-309
    • Ryu, B.H.1    Lee, S.Y.2    Lee, D.H.3    Han, G.Y.4    Lee, T.J.5    Yoon, K.J.6
  • 22
    • 53549121943 scopus 로고    scopus 로고
    • Catalytic characteristics of specialty carbon blacks in decomposition of methane for hydrogen production
    • Lee SY, Ryu BH, Han GY, Lee TJ, Yoon KJ. Catalytic characteristics of specialty carbon blacks in decomposition of methane for hydrogen production. Carbon. 2008;46:1978-1986.
    • (2008) Carbon. , vol.46 , pp. 1978-1986
    • Lee, S.Y.1    Ryu, B.H.2    Han, G.Y.3    Lee, T.J.4    Yoon, K.J.5
  • 23
    • 57249103670 scopus 로고    scopus 로고
    • Ordered mesoporous carbons as highly active catalysts for hydrogen production by CH4 decomposition
    • Serrano DP, Botas JA, Pizarro P, Guil-Lopez R, Gomez G. Ordered mesoporous carbons as highly active catalysts for hydrogen production by CH4 decomposition. Chem Commun. 2008;48:6585-6587.
    • (2008) Chem Commun. , vol.48 , pp. 6585-6587
    • Serrano, D.P.1    Botas, J.A.2    Pizarro, P.3    Guil-Lopez, R.4    Gomez, G.5
  • 24
    • 77956173107 scopus 로고    scopus 로고
    • Methane catalytic decomposition over ordered mesoporous carbons: A promising route for hydrogen production
    • Botas JA, Serrano DP, Guil-Lopez R, Pizarro P, Gomez G. Methane catalytic decomposition over ordered mesoporous carbons: A promising route for hydrogen production. Int J Hydrogen Energy. 2010;35:9788-9794.
    • (2010) Int J Hydrogen Energy. , vol.35 , pp. 9788-9794
    • Botas, J.A.1    Serrano, D.P.2    Guil-Lopez, R.3    Pizarro, P.4    Gomez, G.5
  • 25
    • 65949084742 scopus 로고    scopus 로고
    • 2 production from methane pyrolysis over commercial carbon catalysts: kinetic and deactivation study
    • 2 production from methane pyrolysis over commercial carbon catalysts: kinetic and deactivation study. Int J Hydrogen Energy. 2009;34:4488-4494.
    • (2009) Int J Hydrogen Energy. , vol.34 , pp. 4488-4494
    • Serrano, D.P.1    Botas, J.A.2    Guil-Lopez, R.3
  • 26
    • 77949915260 scopus 로고    scopus 로고
    • Hydrogen production by methane decomposition: origin of the catalytic activity of carbon materials
    • Serrano DP, Botas JA, Fierro JLG, Guil-Lopez R, Pizarro P, Gomez G. Hydrogen production by methane decomposition: origin of the catalytic activity of carbon materials. Fuel. 2010;89:1241-1248.
    • (2010) Fuel. , vol.89 , pp. 1241-1248
    • Serrano, D.P.1    Botas, J.A.2    Fierro, J.L.G.3    Guil-Lopez, R.4    Pizarro, P.5    Gomez, G.6
  • 27
    • 79952991028 scopus 로고    scopus 로고
    • Comparison of metal and carbon catalysts for hydrogen production by methane decomposition
    • Guil-Lopez R, Botas JA, Fierro JLG, Serrano DP. Comparison of metal and carbon catalysts for hydrogen production by methane decomposition. Appl Catal A. 2011;396:40-51.
    • (2011) Appl Catal A. , vol.396 , pp. 40-51
    • Guil-Lopez, R.1    Botas, J.A.2    Fierro, J.L.G.3    Serrano, D.P.4
  • 28
    • 11344286206 scopus 로고    scopus 로고
    • Thermocatalytic decomposition of methane over activated carbons: influence of textural properties and surface chemistry
    • Moliner R, Suelves I, Lazaro MJ, Moreno O. Thermocatalytic decomposition of methane over activated carbons: influence of textural properties and surface chemistry. Int J Hydrogen Energy. 2005;30:293-300.
    • (2005) Int J Hydrogen Energy. , vol.30 , pp. 293-300
    • Moliner, R.1    Suelves, I.2    Lazaro, M.J.3    Moreno, O.4
  • 29
    • 40749116033 scopus 로고    scopus 로고
    • Kinetic study of the thermal decomposition of methane using carbonaceous catalysts
    • Pinilla JL, Suelves I, Lazaro MJ, Moliner R. Kinetic study of the thermal decomposition of methane using carbonaceous catalysts. Chem Eng J. 2008;138:301-306.
    • (2008) Chem Eng J. , vol.138 , pp. 301-306
    • Pinilla, J.L.1    Suelves, I.2    Lazaro, M.J.3    Moliner, R.4
  • 30
    • 44249098276 scopus 로고    scopus 로고
    • Carbonaceous materials as catalysts for decomposition of methane
    • Suelves I, Pinilla JL, Lazaro MJ, Moliner R. Carbonaceous materials as catalysts for decomposition of methane. Chem Eng J. 2008;140:432-438.
    • (2008) Chem Eng J. , vol.140 , pp. 432-438
    • Suelves, I.1    Pinilla, J.L.2    Lazaro, M.J.3    Moliner, R.4
  • 31
    • 33646526567 scopus 로고    scopus 로고
    • Hydrogen production by methane decomposition over coal char
    • Bai Z, Chen H, Li W, Li B. Hydrogen production by methane decomposition over coal char. Int J Hydrogen Energy. 2006;31:899-905.
    • (2006) Int J Hydrogen Energy. , vol.31 , pp. 899-905
    • Bai, Z.1    Chen, H.2    Li, W.3    Li, B.4
  • 32
    • 84861636588 scopus 로고    scopus 로고
    • Carbon black texture evolution during catalytic methane decomposition
    • Kameya Y, Hanamura K. Carbon black texture evolution during catalytic methane decomposition. Carbon. 2012;50:3503-3512.
    • (2012) Carbon. , vol.50 , pp. 3503-3512
    • Kameya, Y.1    Hanamura, K.2
  • 33
    • 39149119256 scopus 로고    scopus 로고
    • Characterization of active sites for methane decomposition on carbon black through acetylene chemisorption
    • Lee SY, Kwak JH, Han GY, Lee TJ, Yoon KJ. Characterization of active sites for methane decomposition on carbon black through acetylene chemisorption. Carbon. 2008;46:342-348.
    • (2008) Carbon. , vol.46 , pp. 342-348
    • Lee, S.Y.1    Kwak, J.H.2    Han, G.Y.3    Lee, T.J.4    Yoon, K.J.5
  • 34
    • 79251635099 scopus 로고    scopus 로고
    • One-dimensional model of solar thermal reactors for the CO-production of hydrogen and carbon black from methane decomposition
    • Patrianakos G, Kostoglou M, Konstandopoulos A. One-dimensional model of solar thermal reactors for the CO-production of hydrogen and carbon black from methane decomposition. Int J Hydrogen Energy. 2011;36:189-202.
    • (2011) Int J Hydrogen Energy. , vol.36 , pp. 189-202
    • Patrianakos, G.1    Kostoglou, M.2    Konstandopoulos, A.3
  • 35
    • 84863567746 scopus 로고    scopus 로고
    • Two-dimensional model of methane thermal decomposition reactors with radiative heat transfer and carbon particle growth
    • Caliot C, Flamant G, Patrianakos G, Kostoglou M, Konstandopoulos AG. Two-dimensional model of methane thermal decomposition reactors with radiative heat transfer and carbon particle growth. AIChE J. 2012;58:2545-2556.
    • (2012) AIChE J. , vol.58 , pp. 2545-2556
    • Caliot, C.1    Flamant, G.2    Patrianakos, G.3    Kostoglou, M.4    Konstandopoulos, A.G.5
  • 36
    • 68749095236 scopus 로고    scopus 로고
    • Particle-gas reacting flow under concentrated solar irradiation
    • Maag G, Lipinski W, Steinfeld A. Particle-gas reacting flow under concentrated solar irradiation. Int J Heat Mass Transfer. 2009;52:4997-5004.
    • (2009) Int J Heat Mass Transfer. , vol.52 , pp. 4997-5004
    • Maag, G.1    Lipinski, W.2    Steinfeld, A.3
  • 37
    • 77951123242 scopus 로고    scopus 로고
    • Step-by-step methodology of developing a solar reactor for emission-free generation of hydrogen
    • Ozalp N, Shilapuram V. Step-by-step methodology of developing a solar reactor for emission-free generation of hydrogen. Int J Hydrogen Energy. 2010;35:4484-4495.
    • (2010) Int J Hydrogen Energy. , vol.35 , pp. 4484-4495
    • Ozalp, N.1    Shilapuram, V.2
  • 38
    • 33748611065 scopus 로고    scopus 로고
    • Kinetic modeling of hydrogen production by thermal decomposition of methane
    • Dunker AM, Ortmann JP. Kinetic modeling of hydrogen production by thermal decomposition of methane. Int J Hydrogen Energy. 2006;31:1989-1998.
    • (2006) Int J Hydrogen Energy. , vol.31 , pp. 1989-1998
    • Dunker, A.M.1    Ortmann, J.P.2
  • 39
    • 79951581708 scopus 로고    scopus 로고
    • Development of a reaction mechanism for predicting hydrogen production from homogeneous decomposition of methane
    • Younessi Sinaki M, Matida EA, Hamdullahpur F. Development of a reaction mechanism for predicting hydrogen production from homogeneous decomposition of methane. Int J Hydrogen Energy. 2011;36(4):2936-2944.
    • (2011) Int J Hydrogen Energy. , vol.36 , Issue.4 , pp. 2936-2944
    • Younessi Sinaki, M.1    Matida, E.A.2    Hamdullahpur, F.3
  • 40
    • 65649138487 scopus 로고    scopus 로고
    • Kinetic model of homogeneous thermal decomposition of methane and ethane
    • Younessi-Sinaki M, Matida EA, Hamdullahpur F. Kinetic model of homogeneous thermal decomposition of methane and ethane. Int J Hydrogen Energy. 2009;34:3710-3716.
    • (2009) Int J Hydrogen Energy. , vol.34 , pp. 3710-3716
    • Younessi-Sinaki, M.1    Matida, E.A.2    Hamdullahpur, F.3
  • 42
    • 58149208087 scopus 로고
    • Detailed modeling of soot particle nucleation and growth
    • Frenklach M, Wang H. Detailed modeling of soot particle nucleation and growth. Proc Combust Inst. 1991;23:1559-1566.
    • (1991) Proc Combust Inst. , vol.23 , pp. 1559-1566
    • Frenklach, M.1    Wang, H.2
  • 44
    • 0030349589 scopus 로고    scopus 로고
    • On surface growth mechanism of soot particles
    • Frenklach, M. On surface growth mechanism of soot particles. Proc Combust Inst. 1996;26:2285-2293.
    • (1996) Proc Combust Inst. , vol.26 , pp. 2285-2293
    • Frenklach, M.1
  • 45
    • 0023383743 scopus 로고
    • Aerosol dynamics modeling using the method of moments
    • Frenklach M, Harris SJ. Aerosol dynamics modeling using the method of moments. J Colloid Interface Sci. 1987;118(1):252-261.
    • (1987) J Colloid Interface Sci. , vol.118 , Issue.1 , pp. 252-261
    • Frenklach, M.1    Harris, S.J.2
  • 47
    • 31444455231 scopus 로고    scopus 로고
    • Production of hydrogen by thermal decomposition of methane in a fluidized-bed reactor-Effects of catalyst, temperature, and residence time
    • Dunker AM, Kumar S, Mulawa PA. Production of hydrogen by thermal decomposition of methane in a fluidized-bed reactor-Effects of catalyst, temperature, and residence time. Int J Hydrogen Energy. 2006;31:473-484.
    • (2006) Int J Hydrogen Energy. , vol.31 , pp. 473-484
    • Dunker, A.M.1    Kumar, S.2    Mulawa, P.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.