메뉴 건너뛰기




Volumn 138, Issue , 2014, Pages 92-98

Exponential stability of stochastic memristor-based recurrent neural networks with time-varying delays

Author keywords

Exponential stability; Memristor; Recurrent neural networks; Stochastic model; Time varying delays

Indexed keywords

ASYMPTOTIC STABILITY; MEMRISTORS; STABILITY CRITERIA; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; TIME DELAY; TIME VARYING CONTROL SYSTEMS; TIME VARYING NETWORKS; VLSI CIRCUITS;

EID: 84899951058     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.02.042     Document Type: Article
Times cited : (49)

References (33)
  • 2
    • 43049139906 scopus 로고    scopus 로고
    • The fourth element
    • Tour J.M., He T. The fourth element. Nature 2008, 453:42-43.
    • (2008) Nature , vol.453 , pp. 42-43
    • Tour, J.M.1    He, T.2
  • 3
    • 0015127532 scopus 로고
    • Memristor-the missing circuit element
    • Chua L.O. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, CT-18:507-519.
    • (1971) IEEE Trans. Circuit Theory , vol.CT-18 , pp. 507-519
    • Chua, L.O.1
  • 4
    • 79953026411 scopus 로고    scopus 로고
    • Dynamic behaviors of a class of memristor-based Hopfield networks
    • Wu A.L., Zhang J.N., Zeng Z.G. Dynamic behaviors of a class of memristor-based Hopfield networks. Phys. Lett. A 2011, 375:1661-1665.
    • (2011) Phys. Lett. A , vol.375 , pp. 1661-1665
    • Wu, A.L.1    Zhang, J.N.2    Zeng, Z.G.3
  • 5
    • 84870269533 scopus 로고    scopus 로고
    • Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays
    • Wu A.L., Zeng Z.G. Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays. Neural Netw. 2012, 36:1-10.
    • (2012) Neural Netw. , vol.36 , pp. 1-10
    • Wu, A.L.1    Zeng, Z.G.2
  • 6
    • 84876918262 scopus 로고    scopus 로고
    • Exponential stabilization of memristive neural networks with time delays
    • Wu A.L., Zeng Z.G. Exponential stabilization of memristive neural networks with time delays. IEEE Trans. Neural Netw. 2012, 12(23):1919-1929.
    • (2012) IEEE Trans. Neural Netw. , vol.12 , Issue.23 , pp. 1919-1929
    • Wu, A.L.1    Zeng, Z.G.2
  • 7
    • 84865314918 scopus 로고    scopus 로고
    • Global exponential stability of a class of memristor-based recurrent neural networks with time-varying delays
    • Zhang G.D., Shen Y., Sun J.W. Global exponential stability of a class of memristor-based recurrent neural networks with time-varying delays. Neurocomputing 2012, 97:149-154.
    • (2012) Neurocomputing , vol.97 , pp. 149-154
    • Zhang, G.D.1    Shen, Y.2    Sun, J.W.3
  • 8
    • 85180619365 scopus 로고    scopus 로고
    • Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays, in: 2010 International Joint Conference on Neural Networks, IJCNN 2010, Barcelona, Spain
    • J. Hu, J. Wang, Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays, in: 2010 International Joint Conference on Neural Networks, IJCNN 2010, Barcelona, Spain, 2010, pp. 1-8.
    • (2010) , pp. 1-8
    • Hu, J.1    Wang, J.2
  • 9
    • 84865338637 scopus 로고    scopus 로고
    • Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays
    • Wen S.P., Zeng Z.G., Huang T.W. Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays. Neurocomputing 2012, 97:233-240.
    • (2012) Neurocomputing , vol.97 , pp. 233-240
    • Wen, S.P.1    Zeng, Z.G.2    Huang, T.W.3
  • 10
    • 84884595425 scopus 로고    scopus 로고
    • Dynamic behaviors of memristor-based delayed recurrent networks
    • Wen S.P., Zeng Z.G., Huang T.W. Dynamic behaviors of memristor-based delayed recurrent networks. Neural Comput. Appl. 2013, 23:815-821.
    • (2013) Neural Comput. Appl. , vol.23 , pp. 815-821
    • Wen, S.P.1    Zeng, Z.G.2    Huang, T.W.3
  • 11
    • 84884236106 scopus 로고    scopus 로고
    • Global exponential dissipativity and stabilization of memristor-based recurrent neural networks with time-varying delays
    • Guo Z., Wang J., Yan Z. Global exponential dissipativity and stabilization of memristor-based recurrent neural networks with time-varying delays. Neural Netw. 2013, 48:158-172.
    • (2013) Neural Netw. , vol.48 , pp. 158-172
    • Guo, Z.1    Wang, J.2    Yan, Z.3
  • 12
    • 84880710802 scopus 로고    scopus 로고
    • Passivity analysis of memristor-based recurrent neural networks with time-varying delays
    • Wen S.P., Zeng Z.G., Huang T.W., Chen Y.R. Passivity analysis of memristor-based recurrent neural networks with time-varying delays. J. Frankl. Inst. 2013, 350:2354-2370.
    • (2013) J. Frankl. Inst. , vol.350 , pp. 2354-2370
    • Wen, S.P.1    Zeng, Z.G.2    Huang, T.W.3    Chen, Y.R.4
  • 13
    • 84897614854 scopus 로고    scopus 로고
    • State estimation of memristor-based recurrent neural networks with time-varying delays based on passivity theory
    • Rakkiyappan R., Chandrasekar A., Laksmanan S., Park J. State estimation of memristor-based recurrent neural networks with time-varying delays based on passivity theory. Complexity 2013, 10.1002/cplx.21482.
    • (2013) Complexity
    • Rakkiyappan, R.1    Chandrasekar, A.2    Laksmanan, S.3    Park, J.4
  • 14
    • 3142672983 scopus 로고    scopus 로고
    • Global robust stability of delayed recurrent neural networks
    • Cao J., Huang D., Qu Y. Global robust stability of delayed recurrent neural networks. Chaos Solitons Fractals 2005, 23:221-229.
    • (2005) Chaos Solitons Fractals , vol.23 , pp. 221-229
    • Cao, J.1    Huang, D.2    Qu, Y.3
  • 15
    • 33947139816 scopus 로고    scopus 로고
    • Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays
    • Cao J., Yuan K., Li H. Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays. IEEE Trans. Neural Netw. 2006, 17(6):1646-1651.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.6 , pp. 1646-1651
    • Cao, J.1    Yuan, K.2    Li, H.3
  • 16
    • 14644434391 scopus 로고    scopus 로고
    • Global asymptotic and robust stability of recurrent neural networks with time delays
    • Cao J., Wang J. Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE Trans. Circuits Syst. I 2005, 52(2):417-426.
    • (2005) IEEE Trans. Circuits Syst. I , vol.52 , Issue.2 , pp. 417-426
    • Cao, J.1    Wang, J.2
  • 17
    • 0036576595 scopus 로고    scopus 로고
    • Global asymptotic stability and global exponential stability of continuous-time recurrent neural networks
    • Hu S., Wang J. Global asymptotic stability and global exponential stability of continuous-time recurrent neural networks. IEEE Trans. Autom. Control 2002, 47(5):802-807.
    • (2002) IEEE Trans. Autom. Control , vol.47 , Issue.5 , pp. 802-807
    • Hu, S.1    Wang, J.2
  • 18
    • 0038218333 scopus 로고    scopus 로고
    • On global asymptotic stability of recurrent neural networks with time-varying delays
    • Huang H., Cao J. On global asymptotic stability of recurrent neural networks with time-varying delays. Appl. Math. Comput. 2003, 142:143-154.
    • (2003) Appl. Math. Comput. , vol.142 , pp. 143-154
    • Huang, H.1    Cao, J.2
  • 19
    • 0037124336 scopus 로고    scopus 로고
    • Global exponential stability and periodic solutions of recurrent neural networks with delays
    • Huang H., Cao J., Wang J. Global exponential stability and periodic solutions of recurrent neural networks with delays. Phys. Lett. A 2002, 298:393-404.
    • (2002) Phys. Lett. A , vol.298 , pp. 393-404
    • Huang, H.1    Cao, J.2    Wang, J.3
  • 20
    • 56449106923 scopus 로고    scopus 로고
    • Exponential stability of recurrent neural networks with both time-varying delays and general activation functions via LMI approach
    • Song Q. Exponential stability of recurrent neural networks with both time-varying delays and general activation functions via LMI approach. Neurocomputing 2008, 71:2823-2830.
    • (2008) Neurocomputing , vol.71 , pp. 2823-2830
    • Song, Q.1
  • 21
    • 40949138432 scopus 로고    scopus 로고
    • An improved algebraic criterion for global exponential stability of recurrent neural networks with time-varying delays
    • Shen Y., Wang J. An improved algebraic criterion for global exponential stability of recurrent neural networks with time-varying delays. IEEE Trans. Neural Netw. 2008, 19(3):528-531.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.3 , pp. 528-531
    • Shen, Y.1    Wang, J.2
  • 22
    • 33751212466 scopus 로고    scopus 로고
    • Global exponential stability of recurrent neural networks with time-varying delays in the presence of strong external stimuli
    • Zeng Z., Wang J. Global exponential stability of recurrent neural networks with time-varying delays in the presence of strong external stimuli. Neural Netw. 2006, 19:1528-1537.
    • (2006) Neural Netw. , vol.19 , pp. 1528-1537
    • Zeng, Z.1    Wang, J.2
  • 23
    • 0142165161 scopus 로고    scopus 로고
    • Global exponential stability of a general class of recurrent neural networks with time-varying delays
    • Zeng Z., Wang J., Liao X. Global exponential stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans. Circuits Syst. I 2003, 50(10):1353-1358.
    • (2003) IEEE Trans. Circuits Syst. I , vol.50 , Issue.10 , pp. 1353-1358
    • Zeng, Z.1    Wang, J.2    Liao, X.3
  • 24
    • 84861726314 scopus 로고    scopus 로고
    • New delay dependent robust asymptotic stability for uncertain stochastic recurrent neural networks with multiple time varying delays
    • Raja R., Samidurai R. New delay dependent robust asymptotic stability for uncertain stochastic recurrent neural networks with multiple time varying delays. J. Frankl Inst. 2012, 349:2108-2123.
    • (2012) J. Frankl Inst. , vol.349 , pp. 2108-2123
    • Raja, R.1    Samidurai, R.2
  • 25
    • 0035400754 scopus 로고    scopus 로고
    • Stability of stochastic delay neural networks
    • Blythe S., Mao X., Liao X. Stability of stochastic delay neural networks. J. Frankl. Inst. 2001, 338:481-495.
    • (2001) J. Frankl. Inst. , vol.338 , pp. 481-495
    • Blythe, S.1    Mao, X.2    Liao, X.3
  • 26
    • 33845581461 scopus 로고    scopus 로고
    • Exponential stability analysis of uncertain stochastic neural networks with multiple delays
    • Huang H., Cao J. Exponential stability analysis of uncertain stochastic neural networks with multiple delays. Nonlinear Anal: Real World Appl. 2007, 8(2):646-653.
    • (2007) Nonlinear Anal: Real World Appl. , vol.8 , Issue.2 , pp. 646-653
    • Huang, H.1    Cao, J.2
  • 27
    • 33745158646 scopus 로고    scopus 로고
    • Robust stability for stochastic Hopfield neural networks with time delays
    • Wang Z., Shu H., Fang J., Liu X. Robust stability for stochastic Hopfield neural networks with time delays. Nonlinear Anal: Real World Appl. 2006, 7:1119-1128.
    • (2006) Nonlinear Anal: Real World Appl. , vol.7 , pp. 1119-1128
    • Wang, Z.1    Shu, H.2    Fang, J.3    Liu, X.4
  • 28
    • 80052930015 scopus 로고    scopus 로고
    • Exponential stability of stochastic reaction-diffusion Cohen-Grossberg neural networks with mixed delays
    • Zhu Q., Cao J. Exponential stability of stochastic reaction-diffusion Cohen-Grossberg neural networks with mixed delays. Neurocomputing 2011, 74:3084-3091.
    • (2011) Neurocomputing , vol.74 , pp. 3084-3091
    • Zhu, Q.1    Cao, J.2
  • 29
    • 79957965051 scopus 로고    scopus 로고
    • Stability analysis of stochastic fuzzy cellular neural networks with time-varying delays
    • Long S., Xu D. Stability analysis of stochastic fuzzy cellular neural networks with time-varying delays. Neurocomputing 2011, 74:2385-2391.
    • (2011) Neurocomputing , vol.74 , pp. 2385-2391
    • Long, S.1    Xu, D.2
  • 30
    • 0036806724 scopus 로고    scopus 로고
    • Exponential stability of stochastic delay interval systems with Markovian switching
    • Mao X. Exponential stability of stochastic delay interval systems with Markovian switching. IEEE Trans. Automat. Control 2002, 47(10):1604-1612.
    • (2002) IEEE Trans. Automat. Control , vol.47 , Issue.10 , pp. 1604-1612
    • Mao, X.1
  • 31
    • 33748523502 scopus 로고    scopus 로고
    • Exponential stability of uncertain stochastic neural networks with mixed time-delays
    • Wang Z., Lauria S., Fang J., Liu X. Exponential stability of uncertain stochastic neural networks with mixed time-delays. Chaos Solitons Fractals 2007, 32:62-72.
    • (2007) Chaos Solitons Fractals , vol.32 , pp. 62-72
    • Wang, Z.1    Lauria, S.2    Fang, J.3    Liu, X.4
  • 32
    • 15244361418 scopus 로고    scopus 로고
    • Existence of solutions of functional stochastic differential inclusions
    • Balasubramaniam P. Existence of solutions of functional stochastic differential inclusions. Tamkang J. Math. 2002, 33:25-33.
    • (2002) Tamkang J. Math. , vol.33 , pp. 25-33
    • Balasubramaniam, P.1
  • 33
    • 0037174277 scopus 로고    scopus 로고
    • Globally exponential stability conditions for cellular neural networks with time-varying delays
    • Zhou D., Cao J. Globally exponential stability conditions for cellular neural networks with time-varying delays. Appl. Math. Comput. 2002, 131(2-3):487-496.
    • (2002) Appl. Math. Comput. , vol.131 , Issue.2-3 , pp. 487-496
    • Zhou, D.1    Cao, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.