메뉴 건너뛰기




Volumn 54, Issue 4, 2014, Pages 1083-1092

Global quantitative structure-activity relationship models vs selected local models as predictors of off-target activities for project compounds

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; STRUCTURES (BUILT OBJECTS);

EID: 84899796522     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci500084w     Document Type: Article
Times cited : (21)

References (22)
  • 1
    • 70350378922 scopus 로고    scopus 로고
    • Global or local QSAR: Is there a way out?
    • Feher, M.; Ewing, T. Global or local QSAR: Is there a way out? QSAR Comb. Sci. 2009, 28, 850-855
    • (2009) QSAR Comb. Sci. , vol.28 , pp. 850-855
    • Feher, M.1    Ewing, T.2
  • 2
    • 77952003134 scopus 로고    scopus 로고
    • Evaluation of quantitative structure-activity relationship modeling strategies: Local and global models
    • Helgee, E. A.; Carlsson, L.; Boyer, S.; Norinder, U. Evaluation of quantitative structure-activity relationship modeling strategies: local and global models J. Chem. Inf. Model. 2010, 50, 677-689
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 677-689
    • Helgee, E.A.1    Carlsson, L.2    Boyer, S.3    Norinder, U.4
  • 4
    • 79958809174 scopus 로고    scopus 로고
    • Using local models to improve (Q)SAR predictivity
    • Buchwald, F.; Girschick, T.; Seeland, M.; Kramer, S. Using local models to improve (Q)SAR predictivity Mol. Inf. 2011, 30, 205-218
    • (2011) Mol. Inf. , vol.30 , pp. 205-218
    • Buchwald, F.1    Girschick, T.2    Seeland, M.3    Kramer, S.4
  • 5
    • 84875799476 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship models that stand the test of time
    • Davis, A. M.; Wood, D. J. Quantitative structure-activity relationship models that stand the test of time Mol. Pharmaceutics 2013, 10, 1183-1190
    • (2013) Mol. Pharmaceutics , vol.10 , pp. 1183-1190
    • Davis, A.M.1    Wood, D.J.2
  • 6
    • 33746928751 scopus 로고    scopus 로고
    • Local lazy regression: Making use of the neighborhood to improve QSAR predictions
    • Gua, R.; Dutta, D.; Jurs, P. C.; Chen, T. Local lazy regression: making use of the neighborhood to improve QSAR predictions J. Chem. Inf. Model. 2006, 46, 1836-1847
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1836-1847
    • Gua, R.1    Dutta, D.2    Jurs, P.C.3    Chen, T.4
  • 7
    • 33750321978 scopus 로고    scopus 로고
    • A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models
    • Zhang, S.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A. A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models J. Chem. Inf. Model. 2006, 46, 1984-1995
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1984-1995
    • Zhang, S.1    Golbraikh, A.2    Oloff, S.3    Kohn, H.4    Tropsha, A.5
  • 8
    • 34548177572 scopus 로고    scopus 로고
    • On-the-fly selection of a training set for aqueous solubility prediction
    • Zhang, H.; Ando, H. Y.; Chen, L.; Lee, P. H. On-the-fly selection of a training set for aqueous solubility prediction Mol. Pharmaceutics 2007, 4, 489-497
    • (2007) Mol. Pharmaceutics , vol.4 , pp. 489-497
    • Zhang, H.1    Ando, H.Y.2    Chen, L.3    Lee, P.H.4
  • 9
    • 37249000796 scopus 로고    scopus 로고
    • Three data mining techniques to improve lazy structure-activity relationships for noncongeneric compounds
    • Sommer, S.; Kramer, S. Three data mining techniques to improve lazy structure-activity relationships for noncongeneric compounds J. Chem. Inf. Model. 2007, 47, 2035-2043
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 2035-2043
    • Sommer, S.1    Kramer, S.2
  • 11
    • 84888627544 scopus 로고    scopus 로고
    • Heterogeneous classifier fusion for ligand-based virtual screening: Or, how decision making by committee can be a good thing
    • Riniker, S.; Fechner, N.; Landrum, G. A. Heterogeneous classifier fusion for ligand-based virtual screening: or, how decision making by committee can be a good thing J. Chem. Inf. Model. 2013, 53, 2829-2836
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2829-2836
    • Riniker, S.1    Fechner, N.2    Landrum, G.A.3
  • 13
  • 14
    • 84888603687 scopus 로고    scopus 로고
    • Using random forest to model the domain applicability of another random forest model
    • Sheridan, R. P. Using random forest to model the domain applicability of another random forest model J. Chem. Inf. Model. 2013, 53, 2837-2850
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2837-2850
    • Sheridan, R.P.1
  • 16
    • 84899816879 scopus 로고    scopus 로고
    • last accessed March 22, 2014.
    • Package PLS. http://cran.r-project.org/web/packages/pls/index.html, last accessed March 22, 2014.
    • Package PLS
  • 17
    • 33845379303 scopus 로고
    • Atom pairs as molecular features in structure-activity studies: Definition and application
    • Carhart, R. E.; Smith, D. H.; Ventkataraghavan, R. Atom pairs as molecular features in structure-activity studies: definition and application J. Chem. Inf. Comput. Sci. 1985, 25, 64-73
    • (1985) J. Chem. Inf. Comput. Sci. , vol.25 , pp. 64-73
    • Carhart, R.E.1    Smith, D.H.2    Ventkataraghavan, R.3
  • 19
    • 0003076470 scopus 로고
    • Topological torsions: A new molecular descriptor for SAR applications comparison with other descriptors
    • Nilakantan, R.; Bauman, N.; Dixon, J. S.; Venkataraghavan, R. Topological torsions: a new molecular descriptor for SAR applications. comparison with other descriptors J. Chem. Inf. Comput. Sci. 1987, 27, 82-85
    • (1987) J. Chem. Inf. Comput. Sci. , vol.27 , pp. 82-85
    • Nilakantan, R.1    Bauman, N.2    Dixon, J.S.3    Venkataraghavan, R.4
  • 20
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Mod. 2010, 50, 742-754
    • (2010) J. Chem. Inf. Mod. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 21
    • 0004313709 scopus 로고    scopus 로고
    • Version 2008, release 10; Chemical Computing Group: Montreal, Canada, last accessed March 22, 2014.
    • Molecular Operating Environment (MOE), Version 2008, release 10; Chemical Computing Group: Montreal, Canada, 2009. www.chemcomp.com, last accessed March 22, 2014.
    • (2009) Molecular Operating Environment (MOE)
  • 22
    • 0032671931 scopus 로고    scopus 로고
    • Unsupervised data base clustering based on Daylight's fingerprint and Tanimoto similarity: A fast and automated way to cluster small and large data sets
    • Butina, D. Unsupervised data base clustering based on Daylight's fingerprint and Tanimoto similarity: A fast and automated way to cluster small and large data sets J. Chem. Inf. Comput. Sci. 1999, 39, 747-750
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 747-750
    • Butina, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.