-
1
-
-
70350378922
-
Global or local QSAR: Is there a way out?
-
Feher, M.; Ewing, T. Global or local QSAR: Is there a way out? QSAR Comb. Sci. 2009, 28, 850-855
-
(2009)
QSAR Comb. Sci.
, vol.28
, pp. 850-855
-
-
Feher, M.1
Ewing, T.2
-
2
-
-
77952003134
-
Evaluation of quantitative structure-activity relationship modeling strategies: Local and global models
-
Helgee, E. A.; Carlsson, L.; Boyer, S.; Norinder, U. Evaluation of quantitative structure-activity relationship modeling strategies: local and global models J. Chem. Inf. Model. 2010, 50, 677-689
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 677-689
-
-
Helgee, E.A.1
Carlsson, L.2
Boyer, S.3
Norinder, U.4
-
3
-
-
83455163851
-
Automated QSAR with a hierarchy of global and local models
-
Wood, D. J.; Buttar, D.; Cumming, J. G.; Davis, A. M.; Norinder, U.; Rodgers, S. L. Automated QSAR with a hierarchy of global and local models Mol. Inf. 2011, 30, 960-972
-
(2011)
Mol. Inf.
, vol.30
, pp. 960-972
-
-
Wood, D.J.1
Buttar, D.2
Cumming, J.G.3
Davis, A.M.4
Norinder, U.5
Rodgers, S.L.6
-
4
-
-
79958809174
-
Using local models to improve (Q)SAR predictivity
-
Buchwald, F.; Girschick, T.; Seeland, M.; Kramer, S. Using local models to improve (Q)SAR predictivity Mol. Inf. 2011, 30, 205-218
-
(2011)
Mol. Inf.
, vol.30
, pp. 205-218
-
-
Buchwald, F.1
Girschick, T.2
Seeland, M.3
Kramer, S.4
-
5
-
-
84875799476
-
Quantitative structure-activity relationship models that stand the test of time
-
Davis, A. M.; Wood, D. J. Quantitative structure-activity relationship models that stand the test of time Mol. Pharmaceutics 2013, 10, 1183-1190
-
(2013)
Mol. Pharmaceutics
, vol.10
, pp. 1183-1190
-
-
Davis, A.M.1
Wood, D.J.2
-
6
-
-
33746928751
-
Local lazy regression: Making use of the neighborhood to improve QSAR predictions
-
Gua, R.; Dutta, D.; Jurs, P. C.; Chen, T. Local lazy regression: making use of the neighborhood to improve QSAR predictions J. Chem. Inf. Model. 2006, 46, 1836-1847
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 1836-1847
-
-
Gua, R.1
Dutta, D.2
Jurs, P.C.3
Chen, T.4
-
7
-
-
33750321978
-
A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models
-
Zhang, S.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A. A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models J. Chem. Inf. Model. 2006, 46, 1984-1995
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 1984-1995
-
-
Zhang, S.1
Golbraikh, A.2
Oloff, S.3
Kohn, H.4
Tropsha, A.5
-
8
-
-
34548177572
-
On-the-fly selection of a training set for aqueous solubility prediction
-
Zhang, H.; Ando, H. Y.; Chen, L.; Lee, P. H. On-the-fly selection of a training set for aqueous solubility prediction Mol. Pharmaceutics 2007, 4, 489-497
-
(2007)
Mol. Pharmaceutics
, vol.4
, pp. 489-497
-
-
Zhang, H.1
Ando, H.Y.2
Chen, L.3
Lee, P.H.4
-
9
-
-
37249000796
-
Three data mining techniques to improve lazy structure-activity relationships for noncongeneric compounds
-
Sommer, S.; Kramer, S. Three data mining techniques to improve lazy structure-activity relationships for noncongeneric compounds J. Chem. Inf. Model. 2007, 47, 2035-2043
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 2035-2043
-
-
Sommer, S.1
Kramer, S.2
-
10
-
-
34547650734
-
Consensus QSAR models: Do the benefits outweight the complexity
-
Hewitt, M.; Cronin, M. T. D.; Madden, J. C.; Rowe, P. H.; Johnson, C.; Obi, A.; Enoch, S. J. Consensus QSAR models: do the benefits outweight the complexity J. Chem. Inf. Model. 2007, 47, 1460-1468
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 1460-1468
-
-
Hewitt, M.1
Cronin, M.T.D.2
Madden, J.C.3
Rowe, P.H.4
Johnson, C.5
Obi, A.6
Enoch, S.J.7
-
11
-
-
84888627544
-
Heterogeneous classifier fusion for ligand-based virtual screening: Or, how decision making by committee can be a good thing
-
Riniker, S.; Fechner, N.; Landrum, G. A. Heterogeneous classifier fusion for ligand-based virtual screening: or, how decision making by committee can be a good thing J. Chem. Inf. Model. 2013, 53, 2829-2836
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2829-2836
-
-
Riniker, S.1
Fechner, N.2
Landrum, G.A.3
-
12
-
-
0345548657
-
Random forest: A classification and regression tool for compound classification and QSAR modeling
-
Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random forest: a classification and regression tool for compound classification and QSAR modeling J. Chem. Inf. Comput. Sci. 2003, 43, 1947-1958
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
13
-
-
0035478854
-
Random forests
-
Breiman, L. Random forests Machine Learning 2001, 45, 5-32
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
14
-
-
84888603687
-
Using random forest to model the domain applicability of another random forest model
-
Sheridan, R. P. Using random forest to model the domain applicability of another random forest model J. Chem. Inf. Model. 2013, 53, 2837-2850
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2837-2850
-
-
Sheridan, R.P.1
-
16
-
-
84899816879
-
-
last accessed March 22, 2014.
-
Package PLS. http://cran.r-project.org/web/packages/pls/index.html, last accessed March 22, 2014.
-
Package PLS
-
-
-
17
-
-
33845379303
-
Atom pairs as molecular features in structure-activity studies: Definition and application
-
Carhart, R. E.; Smith, D. H.; Ventkataraghavan, R. Atom pairs as molecular features in structure-activity studies: definition and application J. Chem. Inf. Comput. Sci. 1985, 25, 64-73
-
(1985)
J. Chem. Inf. Comput. Sci.
, vol.25
, pp. 64-73
-
-
Carhart, R.E.1
Smith, D.H.2
Ventkataraghavan, R.3
-
18
-
-
0001577643
-
Chemical similarity using physiochemical property descriptors
-
Kearsley, S. K.; Sallamack, S.; Fluder, E. M.; Andose, J. D.; Mosley, R. T.; Sheridan, R. P. Chemical similarity using physiochemical property descriptors J. Chem. Inform. Comp. Sci. 1996, 36, 118-27
-
(1996)
J. Chem. Inform. Comp. Sci.
, vol.36
, pp. 118-127
-
-
Kearsley, S.K.1
Sallamack, S.2
Fluder, E.M.3
Andose, J.D.4
Mosley, R.T.5
Sheridan, R.P.6
-
19
-
-
0003076470
-
Topological torsions: A new molecular descriptor for SAR applications comparison with other descriptors
-
Nilakantan, R.; Bauman, N.; Dixon, J. S.; Venkataraghavan, R. Topological torsions: a new molecular descriptor for SAR applications. comparison with other descriptors J. Chem. Inf. Comput. Sci. 1987, 27, 82-85
-
(1987)
J. Chem. Inf. Comput. Sci.
, vol.27
, pp. 82-85
-
-
Nilakantan, R.1
Bauman, N.2
Dixon, J.S.3
Venkataraghavan, R.4
-
20
-
-
77952772341
-
Extended-connectivity fingerprints
-
Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Mod. 2010, 50, 742-754
-
(2010)
J. Chem. Inf. Mod.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
21
-
-
0004313709
-
-
Version 2008, release 10; Chemical Computing Group: Montreal, Canada, last accessed March 22, 2014.
-
Molecular Operating Environment (MOE), Version 2008, release 10; Chemical Computing Group: Montreal, Canada, 2009. www.chemcomp.com, last accessed March 22, 2014.
-
(2009)
Molecular Operating Environment (MOE)
-
-
-
22
-
-
0032671931
-
Unsupervised data base clustering based on Daylight's fingerprint and Tanimoto similarity: A fast and automated way to cluster small and large data sets
-
Butina, D. Unsupervised data base clustering based on Daylight's fingerprint and Tanimoto similarity: A fast and automated way to cluster small and large data sets J. Chem. Inf. Comput. Sci. 1999, 39, 747-750
-
(1999)
J. Chem. Inf. Comput. Sci.
, vol.39
, pp. 747-750
-
-
Butina, D.1
|