-
1
-
-
77950502115
-
A hierarchy of self-renewing tumor-initiating cell types in glioblastoma
-
Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, et al. (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17(4): 362-375.
-
(2010)
Cancer Cell
, vol.17
, Issue.4
, pp. 362-375
-
-
Chen, R.1
Nishimura, M.C.2
Bumbaca, S.M.3
Kharbanda, S.4
Forrest, W.F.5
-
2
-
-
37049033079
-
Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell
-
DOI 10.1158/0008-5472.CAN-07-0718
-
Hansford LM, McKee AE, Zhang L, George RE, Gerstle JT, et al. (2007) Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell. Cancer Res 67(23): 11234-11243. (Pubitemid 350248549)
-
(2007)
Cancer Research
, vol.67
, Issue.23
, pp. 11234-11243
-
-
Hansford, L.M.1
McKee, A.E.2
Zhang, L.3
George, R.E.4
Ted, G.J.5
Thorner, P.S.6
Smith, K.M.7
Thomas, L.A.8
Yeger, H.9
Miller, F.D.10
Irwin, M.S.11
Thiele, C.J.12
Kaplan, D.R.13
-
3
-
-
0842330655
-
Comprehensive genomics linking between neural development and cancer: Neuroblastoma as a model
-
DOI 10.1016/S0304-3835(03)00457-9
-
Nakagawara A, Ohira M. (2004) Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Letters 204(2): 213-224. (Pubitemid 38167724)
-
(2004)
Cancer Letters
, vol.204
, Issue.2
, pp. 213-224
-
-
Nakagawara, A.1
Ohira, M.2
-
4
-
-
0037366067
-
Neuroblastoma: Biological insights into a clinical enigma
-
Brodeur GM. (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3): 203-216.
-
(2003)
Nat Rev Cancer
, vol.3
, Issue.3
, pp. 203-216
-
-
Brodeur, G.M.1
-
5
-
-
79954591415
-
The neuronal differentiation factor NeuroD1 downregulates the neuronal repellent factor Slit2 expression and promotes cell motility and tumor formation of neuroblastoma
-
Huang P, Kishida S, Cao D, Murakami-Tonani Y, Mu P, et al. (2011) The neuronal differentiation factor NeuroD1 downregulates the neuronal repellent factor Slit2 expression and promotes cell motility and tumor formation of neuroblastoma. Cancer Res 71(8): 2938-2948.
-
(2011)
Cancer Res
, vol.71
, Issue.8
, pp. 2938-2948
-
-
Huang, P.1
Kishida, S.2
Cao, D.3
Murakami-Tonani, Y.4
Mu, P.5
-
6
-
-
78149487692
-
Pluripotency and cellular reprogramming: Facts, hypotheses, unresolved issues
-
Hanna JH, Saha K, Jaenisch R. (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143(4): 508-525.
-
(2010)
Cell
, vol.143
, Issue.4
, pp. 508-525
-
-
Hanna, J.H.1
Saha, K.2
Jaenisch, R.3
-
7
-
-
79952196280
-
Intrinsic transition of embryonic stem-cell differentiation into neural progenitors
-
Kamiya D, Banno S, Sasai N, Ohgushi M, Inomata H, et al. (2011) Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature 470(7335): 503-509.
-
(2011)
Nature
, vol.470
, Issue.7335
, pp. 503-509
-
-
Kamiya, D.1
Banno, S.2
Sasai, N.3
Ohgushi, M.4
Inomata, H.5
-
8
-
-
79954414897
-
Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network
-
Ang YS, Tsai SY, Lee DF, Monk J, Su J, et al. (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145(2): 183-197.
-
(2011)
Cell
, vol.145
, Issue.2
, pp. 183-197
-
-
Ang, Y.S.1
Tsai, S.Y.2
Lee, D.F.3
Monk, J.4
Su, J.5
-
9
-
-
67650444760
-
ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays
-
Hu Y, and Smyth GK (2009). ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. Journal of Immunological Methods 347: 70-78.
-
(2009)
Journal of Immunological Methods
, vol.347
, pp. 70-78
-
-
Hu, Y.1
Smyth, G.K.2
-
10
-
-
33646358694
-
Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines
-
DOI 10.1016/j.ccr.2006.03.030, PII S1535610806001176
-
Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, et al. (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5): 391-403. (Pubitemid 43668737)
-
(2006)
Cancer Cell
, vol.9
, Issue.5
, pp. 391-403
-
-
Lee, J.1
Kotliarova, S.2
Kotliarov, Y.3
Li, A.4
Su, Q.5
Donin, N.M.6
Pastorino, S.7
Purow, B.W.8
Christopher, N.9
Zhang, W.10
Park, J.K.11
Fine, H.A.12
-
11
-
-
84855928370
-
Spheres without influence: Dissociating in vitro self-renewal from tumorigenic potential in glioma
-
Read TA, Wechsler-Reya RJ. (2012) Spheres without influence: dissociating in vitro self-renewal from tumorigenic potential in glioma. Cancer Cell 21(1): 1-3.
-
(2012)
Cancer Cell
, vol.21
, Issue.1
, pp. 1-3
-
-
Read, T.A.1
Wechsler-Reya, R.J.2
-
12
-
-
33750313208
-
Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells
-
Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, et al. (2006) Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19): 9339-9344.
-
(2006)
Cancer Res
, vol.66
, Issue.19
, pp. 9339-9344
-
-
Clarke, M.F.1
Dick, J.E.2
Dirks, P.B.3
Eaves, C.J.4
Jamieson, C.H.5
-
13
-
-
77952502408
-
A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth
-
Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, et al. (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141(4): 583-594.
-
(2010)
Cell
, vol.141
, Issue.4
, pp. 583-594
-
-
Roesch, A.1
Fukunaga-Kalabis, M.2
Schmidt, E.C.3
Zabierowski, S.E.4
Brafford, P.A.5
-
14
-
-
84857013044
-
A mouse model of the most aggressive subgroup of human medulloblastoma
-
Kawauchi D, Robinson G, Uziel T, Gibson P, Rehg J, et al. (2012) A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21(2): 168-180.
-
(2012)
Cancer Cell
, vol.21
, Issue.2
, pp. 168-180
-
-
Kawauchi, D.1
Robinson, G.2
Uziel, T.3
Gibson, P.4
Rehg, J.5
-
15
-
-
84855932131
-
Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma
-
Barrett LE, Granot Z, Coker C, Iavarone A, Hambardzumyan D, et al. (2012) Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. Cancer Cell 21(1): 11-24.
-
(2012)
Cancer Cell
, vol.21
, Issue.1
, pp. 11-24
-
-
Barrett, L.E.1
Granot, Z.2
Coker, C.3
Iavarone, A.4
Hambardzumyan, D.5
-
16
-
-
84865960648
-
Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment
-
Tarek N, Le Luduec JB, Gallagher MM, Zheng J, Venstrom JM, et al. (2012) Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. J Clin Invest 122(9): 3260-3270.
-
(2012)
J Clin Invest
, vol.122
, Issue.9
, pp. 3260-3270
-
-
Tarek, N.1
Le Luduec, J.B.2
Gallagher, M.M.3
Zheng, J.4
Venstrom, J.M.5
-
17
-
-
84865203983
-
A restricted cell population propagates glioblastoma growth after chemotherapy
-
Chen J, Li Y, Yu TS, Mckay RM, Burns DK, et al. (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 7412(488): 522-526.
-
(2012)
Nature
, vol.7412
, Issue.488
, pp. 522-526
-
-
Chen, J.1
Li, Y.2
Yu, T.S.3
Mckay, R.M.4
Burns, D.K.5
-
18
-
-
58649111264
-
Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma
-
Read TA, Fogarty MP, Markant SL, Mclendon RE, Wei Z, et al.(2009) Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell15(2): 135-147.
-
(2009)
Cancer Cell
, vol.15
, Issue.2
, pp. 135-147
-
-
Read, T.A.1
Fogarty, M.P.2
Markant, S.L.3
Mclendon, R.E.4
Wei, Z.5
-
19
-
-
0033638174
-
Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity
-
Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, et al. (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28(1): 31-40.
-
(2000)
Neuron
, vol.28
, Issue.1
, pp. 31-40
-
-
Kawasaki, H.1
Mizuseki, K.2
Nishikawa, S.3
Kaneko, S.4
Kuwana, Y.5
-
20
-
-
14544296563
-
Directed differentiation of telencephalic precursors from embryonic stem cells
-
DOI 10.1038/nn1402
-
Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, et al. (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8(3): 288-296. (Pubitemid 40300185)
-
(2005)
Nature Neuroscience
, vol.8
, Issue.3
, pp. 288-296
-
-
Watanabe, K.1
Kamiya, D.2
Nishiyama, A.3
Katayama, T.4
Nozaki, S.5
Kawasaki, H.6
Watanabe, Y.7
Mizuseki, K.8
Sasai, Y.9
-
21
-
-
27144557960
-
A tumorigenic subpopulation with stem cell properties in melanomas
-
Dong Fang, Thiennga K Nguyen, Kim Leishear, Rena Finko, Angela N Kulp, et al. (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer research 65(20): 9328-9337.
-
(2005)
Cancer Research
, vol.65
, Issue.20
, pp. 9328-9337
-
-
Fang, D.1
Nguyen, T.K.2
Leishear, K.3
Finko, R.4
Kulp, A.N.5
-
22
-
-
84863337757
-
Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells
-
Hsing-Chen Tsai, Huili Li, Leander Van Neste, Yi Cai, Carine Robert, et al. (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer cell 21(3): 430-446.
-
(2012)
Cancer Cell
, vol.21
, Issue.3
, pp. 430-446
-
-
Tsai, H.-C.1
Li, H.2
Van Neste, L.3
Cai, Y.4
Robert, C.5
-
23
-
-
84876434755
-
Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer
-
Chenfang Dong, Tingting Yuan, Yadi Wu, Yifan Wang, Teresa W.M Fan, et al. (2013) Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer cell 23(3): 316-331. Technology Technology Technology
-
(2013)
Cancer Cell
, vol.23
, Issue.3
, pp. 316-331
-
-
Dong, C.1
Yuan, T.2
Wu, Y.3
Wang, Y.4
Fan, T.W.M.5
|