-
2
-
-
0018982982
-
A reliability distribution with increasing, decreasing, constant and bathtub failure rates
-
U. Hjorth, A reliability distribution with increasing, decreasing, constant and bathtub failure rates, Technometrics 22 (1980), pp. 99-107. doi: 10.2307/1268388
-
(1980)
Technometrics
, vol.22
, pp. 99-107
-
-
Hjorth, U.1
-
3
-
-
84954777593
-
Bathtub distributions: A review
-
S. Rajarshi and M.B. Rajarshi, Bathtub distributions: A review, Comm. Statist. Theory Methods 17 (1988), pp. 2521-2597. doi: 10.1080/03610928808829761
-
(1988)
Comm. Statist. Theory Methods
, vol.17
, pp. 2521-2597
-
-
Rajarshi, S.1
Rajarshi, M.B.2
-
4
-
-
0026870017
-
A new model for a lifetime distribution with bathtub shaped failure rate
-
E. Haupt and H. Schabe, A new model for a lifetime distribution with bathtub shaped failure rate, Microelectron. Reliab. 32 (1992), pp. 633-639. doi: 10.1016/0026-2714(92)90619-V
-
(1992)
Microelectron. Reliab
, vol.32
, pp. 633-639
-
-
Haupt, E.1
Schabe, H.2
-
5
-
-
0029404196
-
The exponentiated Weibull family: A reanalysis of the bus-motor-failure data
-
G.S. Mudholkar, D.K. Srivastava, and M. Friemer, The exponentiated Weibull family: A reanalysis of the bus-motor-failure data, Technometrics 37 (1995), pp. 436-445. doi: 10.1080/00401706.1995.10484376
-
(1995)
Technometrics
, vol.37
, pp. 436-445
-
-
Mudholkar, G.S.1
Srivastava, D.K.2
Friemer, M.3
-
6
-
-
0041856459
-
A generalization of the Weibull distribution with application to the analysis of survival data
-
G.S. Mudholkar, D.K. Srivastava, and G.D. Kollia, A generalization of the Weibull distribution with application to the analysis of survival data, J. Amer. Statist. Assoc. 91 (1996), pp. 1575-1583. doi: 10.1080/01621459.1996.10476725
-
(1996)
J. Amer. Statist. Assoc
, vol.91
, pp. 1575-1583
-
-
Mudholkar, G.S.1
Srivastava, D.K.2
Kollia, G.D.3
-
7
-
-
0030122796
-
Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function
-
M. Xie and C.D. Lai, Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function, Reliab. Eng. Syst. Saf. 52 (1995), pp. 87-93. doi: 10.1016/0951-8320(95)00149-2
-
(1995)
Reliab. Eng. Syst. Saf
, vol.52
, pp. 87-93
-
-
Xie, M.1
Lai, C.D.2
-
8
-
-
0036604308
-
A modified Weibull extension with bathtub failure rate function
-
M. Xie, Y. Tang, and T.N. Goh, A modified Weibull extension with bathtub failure rate function, Reliab. Eng. Syst. Saf. 76 (2002), pp. 279-285. doi: 10.1016/S0951-8320(02)00022-4
-
(2002)
Reliab. Eng. Syst. Saf
, vol.76
, pp. 279-285
-
-
Xie, M.1
Tang, Y.2
Goh, T.N.3
-
9
-
-
0037334196
-
A modified Weibull distribution
-
C.D. Lai, M. Xie, and D.N.P. Murthy, A modified Weibull distribution, IEEE Trans. Reliab. 52 (2003), pp. 33-37. doi: 10.1109/TR.2002.805788
-
(2003)
IEEE Trans. Reliab
, vol.52
, pp. 33-37
-
-
Lai, C.D.1
Xie, M.2
Murthy, D.N.P.3
-
10
-
-
33846351262
-
A flexible Weibull extension
-
M. Bebbington, C.D. Lai, and R. Zitikis, A flexible Weibull extension, Reliab. Eng. Syst. Saf. 92 (2007), pp. 719-726. doi: 10.1016/j.ress.2006.03.004
-
(2007)
Reliab. Eng. Syst. Saf
, vol.92
, pp. 719-726
-
-
Bebbington, M.1
Lai, C.D.2
Zitikis, R.3
-
11
-
-
77953502535
-
The beta modified Weibull distribution
-
G.O. Silva, E.M.M. Ortega, and G.M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Anal. 16 (2010), pp. 409-430. doi: 10.1007/s10985-010-9161-1
-
(2010)
Lifetime Data Anal
, vol.16
, pp. 409-430
-
-
Silva, G.O.1
Ortega, E.M.M.2
Cordeiro, G.M.3
-
12
-
-
34548619891
-
On recent generalizations of the Weibull distribution
-
H. Pham and C.D. Lai, On recent generalizations of the Weibull distribution, IEEE Trans. Reliab. 56 (2007), pp. 454-458. doi: 10.1109/TR.2007.903352
-
(2007)
IEEE Trans. Reliab
, vol.56
, pp. 454-458
-
-
Pham, H.1
Lai, C.D.2
-
13
-
-
55549101907
-
A generalized modified Weibull distribution for lifetime modeling
-
J.M.F. Carrasco, E.M.M. Ortega, and M.G. Cordeiro, A generalized modified Weibull distribution for lifetime modeling, Comput. Statist. Data Anal. 53 (2008), pp. 450-462. doi: 10.1016/j.csda.2008.08.023
-
(2008)
Comput. Statist. Data Anal
, vol.53
, pp. 450-462
-
-
Carrasco, J.M.F.1
Ortega, E.M.M.2
Cordeiro, M.G.3
-
14
-
-
0018911706
-
A generalized probability density function for double-bounded random processes
-
P. Kumaraswamy, A generalized probability density function for double-bounded random processes, J. Hydrol. 46 (1980), pp. 79-88. doi: 10.1016/0022-1694(80)90036-0
-
(1980)
J. Hydrol
, vol.46
, pp. 79-88
-
-
Kumaraswamy, P.1
-
15
-
-
56949086444
-
Kumaraswamy's distribution: A beta-type distribution with some tractability advantages
-
M.C. Jones, Kumaraswamy's distribution: A beta-type distribution with some tractability advantages, Stat. Methodol. 6 (2009), pp. 70-81. doi: 10.1016/j.stamet.2008.04.001
-
(2009)
Stat. Methodol
, vol.6
, pp. 70-81
-
-
Jones, M.C.1
-
16
-
-
79959296374
-
A new family of generalized distributions
-
G.M. Cordeiro and M. de Castro, A new family of generalized distributions, J. Stat. Comput. Simul. 81 (2011), pp. 883-898. doi: 10.1080/00949650903530745
-
(2011)
J. Stat. Comput. Simul
, vol.81
, pp. 883-898
-
-
Cordeiro, G.M.1
de Castro, M.2
-
17
-
-
0033418995
-
Generalized exponential distributions
-
R.D. Gupta and D. Kundu, Generalized exponential distributions, Aust. N. Z. J. Stat. 41 (1999), pp. 173-188. doi: 10.1111/1467-842X.00072
-
(1999)
Aust. N. Z. J. Stat
, vol.41
, pp. 173-188
-
-
Gupta, R.D.1
Kundu, D.2
-
18
-
-
0035579732
-
Exponentiated exponential distribution: An alternative to gamma and Weibull distributions
-
R.D. Gupta and D. Kundu, Exponentiated exponential distribution: An alternative to gamma and Weibull distributions, Biom. J. 43 (2001), pp. 117-130. doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R
-
(2001)
Biom. J
, vol.43
, pp. 117-130
-
-
Gupta, R.D.1
Kundu, D.2
-
19
-
-
13644270921
-
Generalized Rayleigh distribution: Different methods of estimation
-
D. Kundu and M.Z. Rakab, Generalized Rayleigh distribution: Different methods of estimation, Comput. Statist. Data Anal. 49 (2005), pp. 187-200. doi: 10.1016/j.csda.2004.05.008
-
(2005)
Comput. Statist. Data Anal
, vol.49
, pp. 187-200
-
-
Kundu, D.1
Rakab, M.Z.2
-
20
-
-
0012128166
-
The beta integrated model
-
C.D. Lai, T. Moore, and M. Xie, The beta integrated model, Proceedings of the International Workshop on Reliability Modeling and Analysis - from Theory to Practice, 1998, pp. 153-159.
-
(1998)
Proceedings of the International Workshop on Reliability Modeling and Analysis - from Theory to Practice
, pp. 153-159
-
-
Lai, C.D.1
Moore, T.2
Xie, M.3
-
21
-
-
0027608675
-
Exponentiated Weibull family for analyzing bathtub failure-real data
-
G.S. Mudholkar and D.K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-real data, IEEE Trans. Reliab. 42 (1993), pp. 299-302. doi: 10.1109/24.229504
-
(1993)
IEEE Trans. Reliab
, vol.42
, pp. 299-302
-
-
Mudholkar, G.S.1
Srivastava, D.K.2
-
22
-
-
0032676360
-
The exponentiated Weibull family: A graphical approach
-
R. Jiang and D.N.P. Murthy, The exponentiated Weibull family: A graphical approach, IEEE Trans. Reliab. 48 (1999), pp. 68-72. doi: 10.1109/24.765929
-
(1999)
IEEE Trans. Reliab
, vol.48
, pp. 68-72
-
-
Jiang, R.1
Murthy, D.N.P.2
-
23
-
-
0000865227
-
Modeling failure time data by Lehman alternatives
-
R.C. Gupta, R.D. Gupta, and P.L. Gupta, Modeling failure time data by Lehman alternatives, Commun. Statist. Theory Meth. 27 (1998), pp. 887-904. doi: 10.1080/03610929808832134
-
(1998)
Commun. Statist. Theory Meth
, vol.27
, pp. 887-904
-
-
Gupta, R.C.1
Gupta, R.D.2
Gupta, P.L.3
-
24
-
-
84857659206
-
The exponentiated gamma distribution with application to drought data, Calcutta
-
S. Nadarajah and A.K. Gupta, The exponentiated gamma distribution with application to drought data, Calcutta Stat. Assoc. Bull. 59 (2007), pp. 29-54.
-
(2007)
Stat. Assoc. Bull
, vol.59
, pp. 29-54
-
-
Nadarajah, S.1
Gupta, A.K.2
-
25
-
-
24944503964
-
A simple derivation of moments of the exponentiated Weibull distribution
-
A. Choudhury, A simple derivation of moments of the exponentiated Weibull distribution, Metrika 62 (2005), pp. 17-22. doi: 10.1007/s001840400351
-
(2005)
Metrika
, vol.62
, pp. 17-22
-
-
Choudhury, A.1
-
26
-
-
20144364785
-
On the moments of the modified Weibull distribution
-
S. Nadarajah, On the moments of the modified Weibull distribution, Reliab. Eng. Syst. Saf. 90 (2005), pp. 114-117. doi: 10.1016/j.ress.2004.09.002
-
(2005)
Reliab. Eng. Syst. Saf
, vol.90
, pp. 114-117
-
-
Nadarajah, S.1
-
27
-
-
29344443512
-
On some recent modifications of Weibull distribution
-
S. Nadarajah and S. Kotz, On some recent modifications of Weibull distribution, IEEE Trans. Reliab. 54 (2005), pp. 561-562. doi: 10.1109/TR.2005.858811
-
(2005)
IEEE Trans. Reliab
, vol.54
, pp. 561-562
-
-
Nadarajah, S.1
Kotz, S.2
-
28
-
-
21444436092
-
On the Lambert W function
-
R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth, On the Lambert W function, Adv. Comput. Math. 5 (1996), pp. 329-359. doi: 10.1007/BF02124750
-
(1996)
Adv. Comput. Math
, vol.5
, pp. 329-359
-
-
Corless, R.M.1
Gonnet, G.H.2
Hare, D.E.G.3
Jeffrey, D.J.4
Knuth, D.E.5
-
31
-
-
41249094425
-
Log-modified Weibull regression models with censored data: Sensitivity and residual analysis
-
J.M.F. Carrasco, E.M.M. Ortega, and A.P. Gilberto, Log-modified Weibull regression models with censored data: Sensitivity and residual analysis, Comput. Stat. Data Anal. 52 (2008), pp. 4021-4039. doi: 10.1016/j.csda.2008.01.027
-
(2008)
Comput. Stat. Data Anal
, vol.52
, pp. 4021-4039
-
-
Carrasco, J.M.F.1
Ortega, E.M.M.2
Gilberto, A.P.3
-
32
-
-
79961069877
-
The log-generalized modified Weibull regression model, Braz
-
E.M.M. Ortega, G.M. Cordeiro, and J.M.F. Carrasco, The log-generalized modified Weibull regression model, Braz. J. Probab. Stat. 25 (2011), pp. 64-89.
-
(2011)
J. Probab. Stat
, vol.25
, pp. 64-89
-
-
Ortega, E.M.M.1
Cordeiro, G.M.2
Carrasco, J.M.F.3
-
33
-
-
0010280313
-
A bayesian analysis for the exponentiated-Weibull distribution
-
V.G. Cancho, H. Bolfarine, and J.A. Achcar, A bayesian analysis for the exponentiated-Weibull distribution, J. Appl. Stat. 8 (1999), pp. 227-242.
-
(1999)
J. Appl. Stat
, vol.8
, pp. 227-242
-
-
Cancho, V.G.1
Bolfarine, H.2
Achcar, J.A.3
-
34
-
-
79956076609
-
The log-exponentiated-Weibull regression models with cure rate: Local influence and residual analysis
-
V.G. Cancho, E.M.M. Ortega, and H. Bolfarine, The log-exponentiated-Weibull regression models with cure rate: Local influence and residual analysis, J. Data Sci. 7 (2009), pp. 433-458.
-
(2009)
J. Data Sci
, vol.7
, pp. 433-458
-
-
Cancho, V.G.1
Ortega, E.M.M.2
Bolfarine, H.3
-
35
-
-
33846868441
-
Influence diagnostics in exponentiated -Weibull regression models with censored data
-
E.M.M. Ortega, V.G. Cancho, and H. Bolfarine, Influence diagnostics in exponentiated -Weibull regression models with censored data, Statist. Oper. Res. Trans. 30 (2006), pp. 172-192.
-
(2006)
Statist. Oper. Res. Trans
, vol.30
, pp. 172-192
-
-
Ortega, E.M.M.1
Cancho, V.G.2
Bolfarine, H.3
-
36
-
-
0023326910
-
How to identify bathtub hazard rate
-
M.V. Aarset, How to identify bathtub hazard rate, IEEE Trans. Reliab. 36 (1987), pp. 106-108. doi: 10.1109/TR.1987.5222310
-
(1987)
IEEE Trans. Reliab
, vol.36
, pp. 106-108
-
-
Aarset, M.V.1
-
37
-
-
0034563348
-
A new model with bathtub-shaped failure rate using an additive Burr XII distribution
-
F.K. Wang, A new model with bathtub-shaped failure rate using an additive Burr XII distribution, Reliab. Eng. Syst. Saf. 70 (2000), pp. 305-312. doi: 10.1016/S0951-8320(00)00066-1
-
(2000)
Reliab. Eng. Syst. Saf
, vol.70
, pp. 305-312
-
-
Wang, F.K.1
-
38
-
-
84950442000
-
Logistic regression, survival analysis, and the Kaplan- Meier curve
-
B. Efron, Logistic regression, survival analysis, and the Kaplan- Meier curve, J. Amer. Stat. Assoc. 83 (1988), pp. 414-425. doi: 10.1080/01621459.1988.10478612
-
(1988)
J. Amer. Stat. Assoc
, vol.83
, pp. 414-425
-
-
Efron, B.1
|