메뉴 건너뛰기




Volumn 2123 LNAI, Issue , 2001, Pages 217-225

Nonlinear function learning and classification using optimal radial basis function networks

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; FUNCTIONS; LEARNING ALGORITHMS; MACHINE LEARNING; PATTERN RECOGNITION; ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS;

EID: 84899432409     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-44596-x_18     Document Type: Conference Paper
Times cited : (1)

References (20)
  • 1
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D. S. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Systems 2 (1988) 321-323.
    • (1988) Complex Systems , vol.2 , pp. 321-323
    • Broomhead, D.S.1    Lowe, D.2
  • 2
    • 0000255155 scopus 로고
    • Mean integrated error properties of density estimates
    • K. B. Davis, Mean integrated error properties of density estimates, Annals of Statistics 5, (1977) 530-535.
    • (1977) Annals of Statistics , vol.5 , pp. 530-535
    • Davis, K.B.1
  • 3
    • 21144482666 scopus 로고
    • A note on the usefulness of superkernels in density estimation
    • L. Devroye, A note on the usefulness of superkernels in density estimation, Annals of Statistics 20 (1993) 2037-2056.
    • (1993) Annals of Statistics , vol.20 , pp. 2037-2056
    • Devroye, L.1
  • 7
    • 0003085388 scopus 로고
    • Rates of converegence for radial basis functions and neural networks
    • R. J. Mammone (Ed.) Chapman and Hall, London
    • F. Girosi, G. Anzellotti, Rates of converegence for radial basis functions and neural networks, In: R. J. Mammone (Ed.), Artificial Neural Networks for Speech and Vision, Chapman and Hall, London, 1993, 97-113.
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 97-113
    • Girosi, F.1    Anzellotti, G.2
  • 10
    • 0022775261 scopus 로고
    • The rates of convergence of kernel regression estimates and classification rules
    • A. Krzyzak, The rates of convergence of kernel regression estimates and classification rules, IEEE Trans. on Information Theory 32 (1986) 668-679.
    • (1986) IEEE Trans. on Information Theory , vol.32 , pp. 668-679
    • Krzyzak, A.1
  • 11
    • 0026154625 scopus 로고
    • On exponetial bounds on the bayes risk of the kernal classification rule
    • A. Krzyzak, On exponetial bounds on the Bayes risk of the kernal classification rule, IEEE Transactions on Information Theory 37 (1991) 490-499.
    • (1991) IEEE Transactions on Information Theory , vol.37 , pp. 490-499
    • Krzyzak, A.1
  • 12
    • 0030109050 scopus 로고    scopus 로고
    • Nonparametric estimation and classification using radial basis function nets and empirical risk minimization
    • A. Krzyzak, T. Linder, G. Lugosi, Nonparametric estimation and classification using radial basis function nets and empirical risk minimization, IEEE Transactions on Neural Networks 7 (1996) 475-487.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , pp. 475-487
    • Krzyzak, A.1    Linder, T.2    Lugosi, G.3
  • 13
    • 0032022221 scopus 로고    scopus 로고
    • Radial basis function networks and complexity regu-larization in function learning
    • A. Krzyzak, T. Linder, Radial Basis Function Networks and Complexity Regu-larization in Function Learning, IEEE Transactions on Neural Networks 9 (1998) 247-256.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , pp. 247-256
    • Krzyzak, A.1    Linder, T.2
  • 14
    • 0028320833 scopus 로고
    • Convergence rates for single hidden layer feedforward networks
    • D. F. McCaffrey, A. R. Gallant, Convergence rates for single hidden layer feedforward networks, Neural Networks 7 (1994) 147-158.
    • (1994) Neural Networks , vol.7 , pp. 147-158
    • McCaffrey, D.F.1    Gallant, A.R.2
  • 15
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody, J. Darken, Fast learning in networks of locally-tuned processing units, Neural Computation 1 (1989) 281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, J.2
  • 16
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • J. Park, I. W. Sandberg, Universal approximation using radial-basis-function networks, Neural Computation 3 (1991) 246-257.
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 17
    • 0001002401 scopus 로고
    • Universal approximation using radial-basis-function networks
    • J. Park, I. W. Sandberg, Universal approximation using radial-basis-function networks, Neural Computation 5 (1993) 305-316.
    • (1993) Neural Computation , vol.5 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 18
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable approximation: A review
    • J. C. Mason and M. G. Cox (Eds.) Oxford University Press
    • M. J. D. Powell, Radial basis functions for multivariable approximation: a review, in J. C. Mason and M. G. Cox (Eds.), Algorithms for Approximation, Oxford University Press, 1987, 143-167.
    • (1987) Algorithms for Approximation , pp. 143-167
    • Powell, M.J.D.1
  • 20
    • 0028341934 scopus 로고
    • On radial basis function nets and kernel regression: Statistical consistency, convergence rates and receptive field size
    • L. Xu, A. Krzyzak, A. L. Yuille, On Radial Basis Function Nets and Kernel Regression: Statistical Consistency, Convergence Rates and Receptive Field Size, Neural Networks 7 (1994) 609-628.
    • (1994) Neural Networks , vol.7 , pp. 609-628
    • Xu, L.1    Krzyzak, A.2    Yuille, A.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.