메뉴 건너뛰기




Volumn 7, Issue 2, 1996, Pages 475-487

Nonparametric estimation and classification using radial basis function nets and empirical risk minimization

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; CONVERGENCE OF NUMERICAL METHODS; ERRORS; ESTIMATION; FUNCTIONS; MATHEMATICAL MODELS; MATRIX ALGEBRA; PROBABILITY;

EID: 0030109050     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.485681     Document Type: Article
Times cited : (84)

References (38)
  • 1
    • 0000270806 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • A. R. Barron, "Approximation and estimation bounds for artificial neural networks," in Proc. 4th Annu. Wkshp. Computa. Learning Theory, vol. 4, 1991, pp. 243-249.
    • (1991) Proc. 4th Annu. Wkshp. Computa. Learning Theory , vol.4 , pp. 243-249
    • Barron, A.R.1
  • 2
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • May
    • _, "Universal approximation bounds for superpositions of a sigmoidal function," IEEE Trans. Inform. Theory, vol. 39, pp. 930-945, May 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
  • 3
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • E. B. Baum and D. Haussler, "What size net gives valid generalization?" Neural Computa., vol. 1, pp. 151-160, 1989.
    • (1989) Neural Computa. , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 4
    • 0024750852 scopus 로고
    • Learn-ability and the Vapnik-Chervonenkis dimension
    • A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, "Learn-ability and the Vapnik-Chervonenkis dimension," J. ACM, vol. 36, pp. 929-965, 1989.
    • (1989) J. ACM , vol.36 , pp. 929-965
    • Blumer, A.1    Ehrenfeucht, A.2    Haussler, D.3    Warmuth, M.K.4
  • 5
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and adaptive networks," Complex Syst., vol. 2, pp. 321-323, 1988.
    • (1988) Complex Syst. , vol.2 , pp. 321-323
    • Broomhead, D.S.1    Lowe, D.2
  • 6
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Networks, vol. 2, pp. 302-309, 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 7
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • T. M. Cover, "Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition," IEEE Trans. Electron. Comput., vol. 14, pp. 326-334, 1965.
    • (1965) IEEE Trans. Electron. Comput. , vol.14 , pp. 326-334
    • Cover, T.M.1
  • 9
    • 0024053797 scopus 로고
    • Automatic pattern recognition.: A study of the probability of error
    • L. Devroye, "Automatic pattern recognition.: A study of the probability of error," IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-10, pp. 530-543, 1988.
    • (1988) IEEE Trans. Pattern Anal. Machine Intell. , vol.PAMI-10 , pp. 530-543
    • Devroye, L.1
  • 13
    • 0027632576 scopus 로고
    • Strong universal consistency of neural network classifiers
    • July
    • A. Faragó and G. Lugosi, "Strong universal consistency of neural network classifiers," IEEE Trans. Inform. Theory, vol. 39, pp. 1146-1151, July 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 1146-1151
    • Faragó, A.1    Lugosi, G.2
  • 14
    • 0003085388 scopus 로고
    • Rates of convergence for radial basis functions and neural networks
    • R. J. Mammone, Ed. London: Chapman and Hall
    • F. Girosi and G. Anze Ilotti, "Rates of convergence for radial basis functions and neural networks," in Artificial Neural Networks for Speech and Vision, R. J. Mammone, Ed. London: Chapman and Hall, 1993, pp. 97-114.
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 97-114
    • Girosi, F.1    Anze Ilotti, G.2
  • 16
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximations
    • E. J. Hartman, J. D. Keeler, and J. M. Kowalski, "Layered neural networks with Gaussian hidden units as universal approximations," Neural Computa., vol. 2, pp. 210-215, 1990.
    • (1990) Neural Computa. , vol.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.D.2    Kowalski, J.M.3
  • 17
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • D. Haussler, "Decision theoretic generalizations of the PAC model for neural net and other learning applications," Inform. Computa., vol. 100, pp. 78-150, 1992.
    • (1992) Inform. Computa. , vol.100 , pp. 78-150
    • Haussler, D.1
  • 18
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, S. Stinchocombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchocombe, S.2    White, H.3
  • 19
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • Mar.
    • L. K. Jones, "A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training," Annals Statist., vol. 20, pp. 608-613, Mar. 1992.
    • (1992) Annals Statist. , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 20
    • 0000624821 scopus 로고
    • ε-entropy and ε-capacity of sets in function spaces
    • A. N. Kolmogorov and V. M. Tihomirov, "ε-entropy and ε-capacity of sets in function spaces," Translations Amer. Math. Soc., vol. 17, pp. 277-364, 1961.
    • (1961) Translations Amer. Math. Soc. , vol.17 , pp. 277-364
    • Kolmogorov, A.N.1    Tihomirov, V.M.2
  • 21
    • 0029307575 scopus 로고
    • Nonparametric estimation via empirical risk minimization
    • May
    • G. Lugosi and K. Zieger, "Nonparametric estimation via empirical risk minimization," IEEE Trans. Inform. Theory, vol. 41, pp1 677-687, May 1995.
    • (1995) IEEE Trans. Inform. Theory , vol.41 , pp. 1677-1687
    • Lugosi, G.1    Zieger, K.2
  • 23
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody and J. Darken, "Fast learning in networks of locally-tuned processing units," Neural Computa., vol. 1, pp. 281-294, 1989.
    • (1989) Neural Computa. , vol.1 , pp. 281-294
    • Moody, J.1    Darken, J.2
  • 24
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • J. Park and I. W. Sandberg, "Universal approximation using radial basis function networks," Neural Computa., vol. 3, pp. 246-257, 1991.
    • (1991) Neural Computa. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 25
    • 0001002401 scopus 로고
    • Approximation and radial basis function networks
    • _, "Approximation and radial basis function networks," Neural Computa., vol. 5, pp. 305-316, 1993.
    • (1993) Neural Computa. , vol.5 , pp. 305-316
  • 26
    • 0025490985 scopus 로고
    • A theory of networks for approximation and learning
    • T. Poggio and F. Girosi, "A theory of networks for approximation and learning," Proc. IEEE, vol. 78, pp. 1481-1497, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 28
  • 29
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • Oxford, U.K.: Clarendon
    • M. J. D. Powell, "Radial basis functions for multivariable interpolation: A review," in Algorithms for Approximation. Oxford, U.K.: Clarendon, 1987, pp. 143-167.
    • (1987) Algorithms for Approximation , pp. 143-167
    • Powell, M.J.D.1
  • 30
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • D. F. Specht. "Probabilistic neural networks," Neural Networks, vol. 3. pp. 109-118, 1990.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 31
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. N. Vapnik and A. Y. Chervonenkis, "On the uniform convergence of relative frequencies of events to their probabilities," Theory Probability Applicat., vol. 16, pp. 264-280, 1971.
    • (1971) Theory Probability Applicat. , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 33
    • 0000392470 scopus 로고
    • Some special Vapnik-Chervonenkis classes
    • R. S. Wenocur and R. M. Dudley, "Some special Vapnik-Chervonenkis classes," Discrete Math., vol. 33, pp. 313-318, 1981.
    • (1981) Discrete Math. , vol.33 , pp. 313-318
    • Wenocur, R.S.1    Dudley, R.M.2
  • 35
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks that can learn arbitrary mappings
    • H. White, "Connectionist nonparametric regression: Multilayer feedforward networks that can learn arbitrary mappings," Neural Networks, vol. 3, pp. 535-549, 1990.
    • (1990) Neural Networks , vol.3 , pp. 535-549
    • White, H.1
  • 36
    • 0039849065 scopus 로고
    • Recent advances on techniques static feedforward networks with supervised learning
    • L. Xu, S. Klasa, and A. L. Yuille, "Recent advances on techniques static feedforward networks with supervised learning," Int. J. Neural Syst., vol. 3, pp. 253-290, 1992.
    • (1992) Int. J. Neural Syst. , vol.3 , pp. 253-290
    • Xu, L.1    Klasa, S.2    Yuille, A.L.3
  • 37
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
    • July
    • L. Xu, A. Krzyzak, and E. Oja, "Rival penalized competitive learning for clustering analysis, RBF net, and curve detection," IEEE Trans. Neural Networks, vol. 4, pp. 636-649, July 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 38
    • 0028341934 scopus 로고
    • On radial basis function nets and kernel regression: Approximation ability, convergence rate, and receptive field size
    • L. Xu, A. Krzyżak, and A. L. Yuille, "On radial basis function nets and kernel regression: Approximation ability, convergence rate, and receptive field size," Neural Networks, vol. 7, pp. 609-628, 1994.
    • (1994) Neural Networks , vol.7 , pp. 609-628
    • Xu, L.1    Krzyzak, A.2    Yuille, A.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.