메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Learning efficient random maximum a-posteriori predictors with non-decomposable loss functions

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL PROPERTIES; LINEAR PROGRAMS; LOSS FUNCTIONS; MAP APPROXIMATION; MAXIMUM A POSTERIORI; POSTERIOR DISTRIBUTIONS; POTENTIAL FUNCTION; STOCHASTIC GRADIENT METHODS;

EID: 84899027634     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (17)

References (26)
  • 1
    • 35048899665 scopus 로고    scopus 로고
    • Interactive image segmentation using an adaptive gmmrf model
    • Andrew Blake, Carsten Rother, Matthew Brown, Patrick Perez, and Philip Torr. Interactive image segmentation using an adaptive gmmrf model. In ECCV 2004, pages 428-441. 2004.
    • (2004) ECCV 2004 , pp. 428-441
    • Blake, A.1    Rother, C.2    Brown, M.3    Perez, P.4    Torr, P.5
  • 2
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. PAMI, 2001.
    • (2001) PAMI
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 5
    • 71149105482 scopus 로고    scopus 로고
    • Pac-bayesian learning of linear classifiers
    • ACM
    • P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. Pac-bayesian learning of linear classifiers. In ICML, pages 353-360. ACM, 2009.
    • (2009) ICML , pp. 353-360
    • Germain, P.1    Lacasse, A.2    Laviolette, F.3    Marchand, M.4
  • 10
    • 80051614298 scopus 로고    scopus 로고
    • Pac-bayesian approach for minimization of phoneme error rate
    • J. Keshet, D. McAllester, and T. Hazan. Pac-bayesian approach for minimization of phoneme error rate. In ICASSP, 2011.
    • (2011) ICASSP
    • Keshet, J.1    McAllester, D.2    Hazan, T.3
  • 17
    • 84856654560 scopus 로고    scopus 로고
    • Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models
    • Barcelona, Spain, November
    • G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models. In ICCV, Barcelona, Spain, November 2011.
    • (2011) ICCV
    • Papandreou, G.1    Yuille, A.2
  • 19
    • 0041464774 scopus 로고    scopus 로고
    • Pac-bayesian generalisation error bounds for gaussian process classification
    • Matthias Seeger. Pac-bayesian generalisation error bounds for gaussian process classification. The Journal of Machine Learning Research, 3:233-269, 2003.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 233-269
    • Seeger, M.1
  • 22
  • 23
    • 84867126989 scopus 로고    scopus 로고
    • Randomized optimum models for structured prediction
    • D. Tarlow, R.P. Adams, and R.S. Zemel. Randomized optimum models for structured prediction. In AISTATS, pages 21-23, 2012.
    • (2012) AISTATS , pp. 21-23
    • Tarlow, D.1    Adams, R.P.2    Zemel, R.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.