-
1
-
-
84889882223
-
Improved matrix algorithms via the subsampled randomized hadamard transform
-
ArXiv e-prints, Mar. 2012. To appear in the
-
C. Boutsidis and A. Gittens. Improved matrix algorithms via the Subsampled Randomized Hadamard Transform. ArXiv e-prints, Mar. 2012. To appear in the SIAM Journal on Matrix Analysis and Applications.
-
SIAM Journal on Matrix Analysis and Applications
-
-
Boutsidis, C.1
Gittens, A.2
-
3
-
-
77956526381
-
Low-degree polynomial mapping of data for svm
-
Y. Chang, C. Hsieh, K. Chang, M. Ringgaard, and C. Lin. Low-degree polynomial mapping of data for svm. JMLR, 11, 2010.
-
(2010)
JMLR
, vol.11
-
-
Chang, Y.1
Hsieh, C.2
Chang, K.3
Ringgaard, M.4
Lin, C.5
-
4
-
-
0348230637
-
Finding frequent items in data streams
-
¡ce:title¿Automata, Languages and Programming¡/ ce:title¿
-
M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. Theoretical Computer Science, 312(1):3 - 15, 2004. ¡ce:title¿Automata, Languages and Programming¡/ ce:title¿.
-
(2004)
Theoretical Computer Science
, vol.312
, Issue.1
, pp. 3-15
-
-
Charikar, M.1
Chen, K.2
Farach-Colton, M.3
-
5
-
-
84898945542
-
The fast cauchy transform and faster faster robust regression
-
abs/1207.4684. Also in SODA 2013
-
K. L. Clarkson, P. Drineas, M. Magdon-Ismail, M.W. Mahoney, X. Meng, and D. P.Woodruff. The Fast Cauchy Transform and faster faster robust regression. CoRR, abs/1207.4684, 2012. Also in SODA 2013.
-
(2012)
CoRR
-
-
Clarkson, K.L.1
Drineas, P.2
Magdon-Ismail, M.3
Mahoney, M.W.4
Meng, X.5
Woodruff, D.P.6
-
6
-
-
70350688128
-
Numerical linear algebra in the streaming model
-
STOC '09, New York, NY, USA 2009. ACM
-
K. L. Clarkson and D. P. Woodruff. Numerical linear algebra in the streaming model. In Proceedings of the 41st annual ACM Symposium on Theory of Computing, STOC '09, pages 205-214, New York, NY, USA, 2009. ACM.
-
Proceedings of the 41st Annual ACM Symposium on Theory of Computing
, pp. 205-214
-
-
Clarkson, K.L.1
Woodruff, D.P.2
-
7
-
-
84879805132
-
Low rank approximation and regression in input sparsity time
-
STOC '13, New York, NY, USA. ACM
-
K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input sparsity time. In Proceedings of the 45th annual ACM Symposium on Theory of Computing, STOC '13, pages 81-90, New York, NY, USA, 2013. ACM.
-
(2013)
Proceedings of the 45th Annual ACM Symposium on Theory of Computing
, pp. 81-90
-
-
Clarkson, K.L.1
Woodruff, D.P.2
-
8
-
-
84863393897
-
p regression
-
A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. Mahoney. Sampling algorithms and coresets for ℓp regression. SIAM Journal on Computing, 38(5):2060-2078, 2009.
-
(2009)
SIAM Journal on Computing
, vol.38
, Issue.5
, pp. 2060-2078
-
-
Dasgupta, A.1
Drineas, P.2
Harb, B.3
Kumar, R.4
Mahoney, M.5
-
9
-
-
77952733655
-
Sparse recovery using sparse matrices
-
A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of the IEEE, 98(6):937-947, 2010.
-
(2010)
Proceedings of the IEEE
, vol.98
, Issue.6
, pp. 937-947
-
-
Gilbert, A.1
Indyk, P.2
-
10
-
-
79960425522
-
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
-
N. Halko, P. G. Martinsson, and J. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217-288, 2011.
-
(2011)
SIAM Review
, vol.53
, Issue.2
, pp. 217-288
-
-
Halko, N.1
Martinsson, P.G.2
Tropp, J.3
-
14
-
-
84879805212
-
Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression
-
STOC '13, New York, NY, USA. ACM
-
X. Meng and M.W. Mahoney. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression. In Proceedings of the 45th annual ACM Symposium on Theory of Computing, STOC '13, pages 91-100, New York, NY, USA, 2013. ACM.
-
(2013)
Proceedings of the 45th Annual ACM Symposium on Theory of Computing
, pp. 91-100
-
-
Meng, X.1
Mahoney, M.W.2
-
15
-
-
84893502222
-
OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings
-
abs/1211.1002
-
J. Nelson and H. L. Nguyen. OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings. CoRR, abs/1211.1002, 2012.
-
(2012)
CoRR
-
-
Nelson, J.1
Nguyen, H.L.2
-
17
-
-
51649090940
-
A fast randomized algorithm for overdetermined linear least-squares regression
-
V. Rokhlin and M. Tygert. A fast randomized algorithm for overdetermined linear least-squares regression. Proceedings of the National Academy of Sciences, 105(36):13212, 2008.
-
(2008)
Proceedings of the National Academy of Sciences
, vol.105
, Issue.36
, pp. 13212
-
-
Rokhlin, V.1
Tygert, M.2
-
18
-
-
0003535075
-
-
Wiley Classics Library.Wiley-Interscience, New York
-
W. Rudin. Fourier Analysis on Groups. Wiley Classics Library.Wiley- Interscience, New York, 1994.
-
(1994)
Fourier Analysis on Groups
-
-
Rudin, W.1
-
19
-
-
35348901208
-
Improved approximation algorithms for large matrices via random projections
-
FOCS '06
-
T. Sarlós. Improved approximation algorithms for large matrices via random projections. In Proceeding of IEEE Symposium on Foundations of Computer Science, FOCS '06, pages 143- 152, 2006.
-
(2006)
Proceeding of IEEE Symposium on Foundations of Computer Science
, pp. 143-152
-
-
Sarlós, T.1
-
21
-
-
84962839527
-
p regression using exponential random variables
-
D. P. Woodruff and Q. Zhang. Subspace embeddings and lp regression using exponential random variables. In COLT, 2013.
-
(2013)
COLT
-
-
Woodruff, D.P.1
Zhang, Q.2
|