메뉴 건너뛰기




Volumn 4, Issue , 2012, Pages 2933-2941

Submodular-Bregman and the Lovász-Bregman divergences with applications

Author keywords

[No Author keywords available]

Indexed keywords

BINARY VECTORS; BREGMAN DIVERGENCES; CONDITIONAL MUTUAL INFORMATION; DISTANCE MEASURE; K-MEANS ALGORITHM; PROXIMAL ALGORITHM; SUBMODULAR FUNCTIONS; WEIGHTED HAMMING DISTANCES;

EID: 84877770723     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (41)

References (27)
  • 2
    • 26244461684 scopus 로고    scopus 로고
    • Clustering with Bregman divergences
    • Oct.
    • A. Banerjee, S. Meregu, I. S. Dhilon, and J. Ghosh. Clustering with Bregman divergences. JMLR, 6:1705-1749, Oct. 2005.
    • (2005) JMLR , vol.6 , pp. 1705-1749
    • Banerjee, A.1    Meregu, S.2    Dhilon, I.S.3    Ghosh, J.4
  • 3
    • 31244435415 scopus 로고    scopus 로고
    • Pseudo-Boolean optimization
    • E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Applied Math., 123(1-3):155-225, 2002.
    • (2002) Discrete Applied Math. , vol.123 , Issue.1-3 , pp. 155-225
    • Boros, E.1    Hammer, P.L.2
  • 4
    • 49949144765 scopus 로고
    • The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
    • L. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math and Math Physics, 7, 1967.
    • (1967) USSR Comput. Math and Math Physics , vol.7
    • Bregman, L.1
  • 8
    • 52349098751 scopus 로고    scopus 로고
    • Functional Bregman divergence
    • IEEE
    • B. Frigyik, S. Srivastava, and M. Gupta. Functional Bregman divergence. In In Proc. ISIT, pages 1681-1685. IEEE, 2008.
    • (2008) Proc. ISIT , pp. 1681-1685
    • Frigyik, B.1    Srivastava, S.2    Gupta, M.3
  • 11
    • 84886063323 scopus 로고    scopus 로고
    • Algorithms for approximate minimization of the difference between submodular functions, with applications
    • R. Iyer and J. Bilmes. Algorithms for approximate minimization of the difference between submodular functions, with applications. In Proc. UAI, 2012.
    • (2012) Proc. UAI
    • Iyer, R.1    Bilmes, J.2
  • 15
    • 80052906787 scopus 로고    scopus 로고
    • Submodularity beyond submodular energies: Coupling edges in graph cuts
    • Colorado Springs, CO, June
    • S. Jegelka and J. Bilmes. Submodularity beyond submodular energies: coupling edges in graph cuts. In Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, June 2011.
    • (2011) Computer Vision and Pattern Recognition (CVPR)
    • Jegelka, S.1    Bilmes, J.2
  • 16
    • 84877751010 scopus 로고    scopus 로고
    • Fast approximate submodular minimization
    • S. Jegelka, H. Lin, and J. Bilmes. Fast approximate submodular minimization. In Proc. NIPS, 2011.
    • (2011) Proc. NIPS
    • Jegelka, S.1    Lin, H.2    Bilmes, J.3
  • 17
    • 0002282074 scopus 로고
    • A new measure of rank correlation
    • M. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81-93, 1938.
    • (1938) Biometrika , vol.30 , Issue.1-2 , pp. 81-93
    • Kendall, M.1
  • 18
    • 0031146730 scopus 로고    scopus 로고
    • Free-steering relaxation methods for problems with strictly convex costs and linear constraints
    • K. C. Kiwiel. Free-steering relaxation methods for problems with strictly convex costs and linear constraints. Mathematics of Operations Research, 22(2):326-349, 1997.
    • (1997) Mathematics of Operations Research , vol.22 , Issue.2 , pp. 326-349
    • Kiwiel, K.C.1
  • 19
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • S. Lloyd. Least squares quantization in pcm. IEEE Transactions on IT, 28(2):129-137, 1982.
    • (1982) IEEE Transactions on IT , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.1
  • 21
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • California, USA
    • J. MacQueen et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on math. stats and probability, volume 1, pages 281-297. California, USA, 1967.
    • (1967) Proceedings of the Fifth Berkeley Symposium on Math. Stats and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 22
    • 80053291910 scopus 로고    scopus 로고
    • A submodular-supermodular procedure with applications to discriminative structure learning
    • Edinburgh, Scotland, July
    • M. Narasimhan and J. Bilmes. A submodular-supermodular procedure with applications to discriminative structure learning. In Uncertainty in Artificial Intelligence (UAI), Edinburgh, Scotland, July 2005.
    • (2005) Uncertainty in Artificial Intelligence (UAI)
    • Narasimhan, M.1    Bilmes, J.2
  • 23
    • 0000095809 scopus 로고
    • An analysis of approximations for maximizing submodular set functions-i
    • G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular set functions-i. Mathematical Programming, 14(1):265-294, 1978.
    • (1978) Mathematical Programming , vol.14 , Issue.1 , pp. 265-294
    • Nemhauser, G.1    Wolsey, L.2    Fisher, M.3
  • 26
    • 21844471282 scopus 로고    scopus 로고
    • Matrix exponentiated gradient updates for on-line learning and Bregman projection
    • K. Tsuda, G. Ratsch, and M. Warmuth. Matrix exponentiated gradient updates for on-line learning and Bregman projection. JMLR, 6(1):995, 2006.
    • (2006) JMLR , vol.6 , Issue.1 , pp. 995
    • Tsuda, K.1    Ratsch, G.2    Warmuth, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.