-
1
-
-
77955172914
-
Sparse coding and high-order correlations in fine-scale cortical networks
-
July
-
I. E. Ohiorhenuan, F. Mechler, K. P. Purpura, A. M. Schmid, Q. Hu, and J. D. Victor. Sparse coding and high-order correlations in fine-scale cortical networks. Nature, 466(7306):617-621, July 2010.
-
(2010)
Nature
, vol.466
, Issue.7306
, pp. 617-621
-
-
Ohiorhenuan, I.E.1
Mechler, F.2
Purpura, K.P.3
Schmid, A.M.4
Hu, Q.5
Victor, J.D.6
-
2
-
-
77951455815
-
High-dimensional Ising model selection using L1- regularized logistic regression
-
P. Ravikumar, M. Wainwright, and J. Lafferty. High-dimensional Ising model selection using L1- regularized logistic regression. The Annals of Statistics, 38(3):1287-1319, 2010.
-
(2010)
The Annals of Statistics
, vol.38
, Issue.3
, pp. 1287-1319
-
-
Ravikumar, P.1
Wainwright, M.2
Lafferty, J.3
-
3
-
-
79959354385
-
Sparse low-order interaction network underlies a highly correlated and learnable neural population code
-
E. Ganmor, R. Segev, and E. Schneidman. Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proceedings of the National Academy of Sciences, 108(23):9679-9684, 2011.
-
(2011)
Proceedings of the National Academy of Sciences
, vol.108
, Issue.23
, pp. 9679-9684
-
-
Ganmor, E.1
Segev, R.2
Schneidman, E.3
-
4
-
-
33646170322
-
Weak pairwise correlations imply strongly correlated network states in a neural population
-
Apr
-
E. Schneidman, M. J. Berry, R. Segev, and W. Bialek. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087):1007-1012, Apr 2006.
-
(2006)
Nature
, vol.440
, Issue.7087
, pp. 1007-1012
-
-
Schneidman, E.1
Berry, M.J.2
Segev, R.3
Bialek, W.4
-
5
-
-
33748175149
-
The structure of multi-neuron firing patterns in primate retina
-
J. Shlens, G. Field, J. Gauthier, M. Grivich, D. Petrusca, A. Sher, L. A. Mu, and E. J. Chichilnisky. The structure of multi-neuron firing patterns in primate retina. J Neurosci, 26:8254-8266, 2006.
-
(2006)
J Neurosci
, vol.26
, pp. 8254-8266
-
-
Shlens, J.1
Field, G.2
Gauthier, J.3
Grivich, M.4
Petrusca, D.5
Sher, A.6
Mu, L.A.7
Chichilnisky, E.J.8
-
6
-
-
0000329993
-
-
MIT Press, Cambridge, MA, USA
-
P. Smolensky. Parallel distributed processing: explorations in the microstructure of cognition, vol. 1. chapter Information processing in dynamical systems: foundations of harmony theory, pages 194-281. MIT Press, Cambridge, MA, USA, 1986.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1 Chapter Information Processing in Dynamical Systems: Foundations of Harmony Theory
, pp. 194-281
-
-
Smolensky, P.1
-
7
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
9
-
-
85162002902
-
Near-maximum entropy models for binary neural representations of natural images
-
M. Bethge and P. Berens. Near-maximum entropy models for binary neural representations of natural images. Advances in neural information processing systems, 20:97-104, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 97-104
-
-
Bethge, M.1
Berens, P.2
-
10
-
-
4043092820
-
Nonparametric bayesian data analysis
-
P. Müller and F. A. Quintana. Nonparametric bayesian data analysis. Statistical science, 19(1):95-110, 2004.
-
(2004)
Statistical Science
, vol.19
, Issue.1
, pp. 95-110
-
-
Müller, P.1
Quintana, F.A.2
-
11
-
-
33749249312
-
Hierarchical dirichlet processes
-
Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):1566-1581, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.476
, pp. 1566-1581
-
-
Teh, Y.W.1
Jordan, M.I.2
Beal, M.J.3
Blei, D.M.4
-
12
-
-
33847636281
-
Nonparametric modeling of neural point processes via stochastic gradient boosting regression
-
W. Truccolo and J. P. Donoghue. Nonparametric modeling of neural point processes via stochastic gradient boosting regression. Neural computation, 19(3):672-705, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.3
, pp. 672-705
-
-
Truccolo, W.1
Donoghue, J.P.2
-
13
-
-
71149087298
-
Tractable nonparametric bayesian inference in poisson processes with gaussian process intensities
-
ACM New York, NY, USA
-
R. P. Adams, I. Murray, and D. J. C. MacKay. Tractable nonparametric bayesian inference in poisson processes with gaussian process intensities. In Proceedings of the 26th Annual International Conference on Machine Learning. ACM New York, NY, USA, 2009.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
-
-
Adams, R.P.1
Murray, I.2
Mackay, D.J.C.3
-
14
-
-
81555219119
-
Bayesian nonparametric analysis of neuronal intensity rates
-
January
-
A. Kottas, S. Behseta, D. E. Moorman, V. Poynor, and C. R. Olson. Bayesian nonparametric analysis of neuronal intensity rates. Journal of Neuroscience Methods, 203(1):241-253, January 2012.
-
(2012)
Journal of Neuroscience Methods
, vol.203
, Issue.1
, pp. 241-253
-
-
Kottas, A.1
Behseta, S.2
Moorman, D.E.3
Poynor, V.4
Olson, C.R.5
-
18
-
-
0014612601
-
Reducing the bandwidth of sparse symmetric matrices
-
New York, NY, USA, ACM
-
E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the 1969 24th national conference, ACM '69, pages 157-172, New York, NY, USA, 1969. ACM.
-
(1969)
Proceedings of the 1969 24th National Conference, ACM '
, vol.69
, pp. 157-172
-
-
Cuthill, E.1
McKee, J.2
|