메뉴 건너뛰기




Volumn 24, Issue 5, 2014, Pages 1946-1993

Mean field limit for disordered diffusions with singular interactions

Author keywords

Disordered models; Dissipative systems; FitzHugh Nagumo model; Kuramoto model; Spatially extended particle systems; Wasserstein distance; Weakly interacting diffusions

Indexed keywords


EID: 84898909005     PISSN: 10505164     EISSN: None     Source Type: Journal    
DOI: 10.1214/13-AAP968     Document Type: Article
Times cited : (71)

References (40)
  • 1
    • 19944385353 scopus 로고    scopus 로고
    • The Kuramoto model: A simple paradigm for synchronization phenomena
    • DOI 10.1103/RevModPhys.77.137
    • ACEBRÓN, J. A., BONILLA, L. L., PÉREZ VICENTE, C. J., RITORT, F. and SPIGLER, R. (2005). The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Modern Phys. 77 137-185. (Pubitemid 41490657)
    • (2005) Reviews of Modern Physics , vol.77 , Issue.1 , pp. 137-185
    • Acebron, J.A.1    Bonilla, L.L.2    Vicente, C.J.P.3    Ritort, F.4    Spigler, R.5
  • 2
    • 84861896478 scopus 로고    scopus 로고
    • Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons
    • BALADRON, J., FASOLI, D., FAUGERAS, O. and TOUBOUL, J. (2012). Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci. 2 Art. 10, 50.
    • (2012) J. Math. Neurosci. 2 Art. , vol.10 , pp. 50
    • Baladron, J.1    Fasoli, D.2    Faugeras, O.3    Touboul, J.4
  • 4
    • 77956719419 scopus 로고    scopus 로고
    • Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation
    • BOLLEY, F., GUILLIN, A. and MALRIEU, F. (2010). Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. M2AN Math. Model. Numer. Anal. 44 867-884.
    • (2010) M2AN Math. Model. Numer. Anal. , vol.44 , pp. 867-884
    • Bolley, F.1    Guillin, A.2    Malrieu, F.3
  • 5
    • 33845889473 scopus 로고    scopus 로고
    • Quantitative concentration inequalities for empirical measures on non-compact spaces
    • BOLLEY, F.,GUILLIN, A. andVILLANI, C. (2007). Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Related Fields 137 541-593.
    • (2007) Probab. Theory Related Fields , vol.137 , pp. 541-593
    • Bolley F.Guillin, A.1    Villani, C.2
  • 6
  • 7
    • 0030489571 scopus 로고    scopus 로고
    • Convergence rate for the approximation of the limit law of weakly interacting particles: Application to the Burgers equation
    • BOSSY, M. and TALAY, D. (1996). Convergence rate for the approximation of the limit law of weakly interacting particles: Application to the Burgers equation. Ann. Appl. Probab. 6 818-861.
    • (1996) Ann. Appl. Probab. , vol.6 , pp. 818-861
    • Bossy, M.1    Talay, D.2
  • 8
    • 0003196688 scopus 로고    scopus 로고
    • Second order PDE's in finite and infinite dimension: A probabilistic approach
    • Springer, Berlin
    • CERRAI, S. (2001). Second Order PDE's in Finite and Infinite Dimension: A Probabilistic Approach. Lecture Notes in Math. 1762. Springer, Berlin.
    • (2001) Lecture Notes in Math. , vol.1762
    • Cerrai, S.1
  • 9
    • 77954517934 scopus 로고    scopus 로고
    • Synchronization of oscillators with long-range power law interactions
    • CHOWDHURY, D. and CROSS, M. C. (2010). Synchronization of oscillators with long-range power law interactions. Phys. Rev. E, 82 016205.
    • (2010) Phys. Rev. E , vol.82 , pp. 016205
    • Chowdhury, D.1    Cross, M.C.2
  • 10
    • 0030210666 scopus 로고    scopus 로고
    • McKean-Vlasov limit for interacting random processes in random media
    • DAI PRA, P. and DEN HOLLANDER, F. (1996). McKean-Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84 735-772.
    • (1996) J. Stat. Phys. , vol.84 , pp. 735-772
    • Dai Pra, P.1    Den Hollander, F.2
  • 11
    • 0032339667 scopus 로고    scopus 로고
    • Some remarks about backward itô formula and applications
    • DA PRATO, G. and TUBARO, L. (1998). Some remarks about backward Itô formula and applications. Stoch. Anal. Appl. 16 993-1003. (Pubitemid 128375632)
    • (1998) Stochastic Analysis and Applications , vol.16 , Issue.6 , pp. 993-1003
    • Da Prato, G.1    Tubaro, L.2
  • 13
    • 0007461162 scopus 로고    scopus 로고
    • A moran particle system approximation of feynman- kac formulae
    • DEL MORAL, P. andMICLO, L. (2000). A Moran particle system approximation of Feynman- Kac formulae. Stochastic Process. Appl. 86 193-216.
    • (2000) Stochastic Process. Appl. , vol.86 , pp. 193-216
    • Del Moral, P.1    Miclo, L.2
  • 16
    • 84985400388 scopus 로고
    • On the McKean-Vlasov limit for interacting diffusions
    • GÄRTNER, J. (1988). On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137 197-248.
    • (1988) Math. Nachr. , vol.137 , pp. 197-248
    • Gärtner, J.1
  • 19
    • 84859795069 scopus 로고    scopus 로고
    • Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators
    • GIACOMIN, G., PAKDAMAN, K. and PELLEGRIN, X. (2012). Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity 25 1247-1273.
    • (2012) Nonlinearity , vol.25 , pp. 1247-1273
    • Giacomin, G.1    Pakdaman, K.2    Pellegrin, X.3
  • 20
    • 84862156782 scopus 로고    scopus 로고
    • One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics of spatial Fourier modes
    • GUPTA, S., POTTERS, M. and RUFFO, S. (2012). One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics of spatial Fourier modes. Phys. Rev. E, 85 066201.
    • (2012) Phys. Rev. E , vol.85 , pp. 066201
    • Gupta, S.1    Potters, M.2    Ruffo, S.3
  • 22
    • 0032325532 scopus 로고    scopus 로고
    • Propagation of chaos and fluctuations for a moderate model with smooth initial data
    • JOURDAIN, B. andMÉLÉARD, S. (1998). Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. Henri Poincaré Probab. Stat. 34 727-766.
    • (1998) Ann. Inst. Henri Poincaré Probab. Stat. , vol.34 , pp. 727-766
    • Jourdain, B.1    Andméléard, S.2
  • 23
    • 0003282323 scopus 로고
    • Introduction to the theory of diffusion processes. Translations of Mathematical Monographs
    • Providence, RI.
    • KRYLOV, N. V. (1995). Introduction to the Theory of Diffusion Processes. Translations of Mathematical Monographs. Amer. Math. Soc., Providence, RI.
    • (1995) Amer. Math. Soc.
    • Krylov, N.V.1
  • 24
    • 79955615554 scopus 로고    scopus 로고
    • Quenched limits and fluctuations of the empirical measure for plane rotators in random media
    • LUÇON, E. (2011). Quenched limits and fluctuations of the empirical measure for plane rotators in random media. Electron. J. Probab. 16 792-829.
    • (2011) Electron. J. Probab. , vol.16 , pp. 792-829
    • Luçon, E.1
  • 25
    • 21144445368 scopus 로고    scopus 로고
    • Convergence to equilibrium for granular media equations and their Euler schemes
    • MALRIEU, F. (2003). Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13 540-560.
    • (2003) Ann. Appl. Probab. , vol.13 , pp. 540-560
    • Malrieu, F.1
  • 26
    • 41349085147 scopus 로고    scopus 로고
    • Synchronization of oscillators with long range interaction: Phase transition and anomalous finite size effects
    • MARÓDI, M., DOVIDIO, F. and VICSEK, T. (2002). Synchronization of oscillators with long range interaction: Phase transition and anomalous finite size effects. Phys. Rev. E, 66 011109.
    • (2002) Phys. Rev. E , vol.66 , pp. 011109
    • Maródi, M.1    Dovidio, F.2    Vicsek, T.3
  • 27
    • 0003002903 scopus 로고
    • Propagation of chaos for a class of non-linear parabolic equations
    • (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, VA
    • MCKEAN, H. P. Jr. (1967). Propagation of chaos for a class of non-linear parabolic equations. In Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967) 41-57. Air Force Office Sci. Res., Arlington, VA.
    • (1967) Stochastic Differential Equations , pp. 41-57
    • Mckean, Jr.H.P.1
  • 28
    • 0000669223 scopus 로고
    • A propagation of chaos result for a system of particles with moderate interaction
    • MÉLÉARD, S. and ROELLY-COPPOLETTA, S. (1987). A propagation of chaos result for a system of particles with moderate interaction. Stochastic Process. Appl. 26 317-332.
    • (1987) Stochastic Process. Appl. , vol.26 , pp. 317-332
    • Méléard, S.1    Roelly-Coppoletta, S.2
  • 29
    • 0040554658 scopus 로고
    • A martingale approach to the law of large numbers for weakly interacting stochastic processes
    • OELSCHLÄGER, K. (1984). A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Probab. 12 458-479.
    • (1984) Ann. Probab. , vol.12 , pp. 458-479
    • Oelschläger, K.1
  • 30
    • 51249177449 scopus 로고
    • A law of large numbers for moderately interacting diffusion processes
    • OELSCHLÄGER, K. (1985). A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch. Verw. Gebiete 69 279-322
    • (1985) Z. Wahrsch Verw. Gebiete , vol.69 , pp. 279-322
    • Oelschläger, K.1
  • 31
    • 79960634409 scopus 로고    scopus 로고
    • Loss of coherence in dynamical networks: Spatial chaos and chimera states
    • OMELCHENKO, I.,MAISTRENKO, Y., HÖVEL, P. and SCHÖLL, E. (2011). Loss of coherence in dynamical networks: Spatial chaos and chimera states. Phys. Rev. Lett. 106 234102.
    • (2011) Phys. Rev. Lett. , vol.106 , pp. 234102
    • Omelchenko, I.1    Maistrenko, Y.2    Hövel, P.3    Schöll, E.4
  • 33
    • 0001042755 scopus 로고    scopus 로고
    • Phase transitions in nonlinear oscillator chains
    • ROGERS, J. L. andWILLE, L. T. (1996). Phase transitions in nonlinear oscillator chains. Phys. Rev. E, 54 R2193-R2196.
    • (1996) Phys. Rev. E , vol.54
    • Rogers, J.L.1    Wille, L.T.2
  • 34
    • 1542499302 scopus 로고
    • Stability of incoherence in a population of coupled oscillators
    • STROGATZ, S. H. and MIROLLO, R. E. (1991). Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63 613-635.
    • (1991) J. Stat. Phys. , vol.63 , pp. 613-635
    • Strogatz, S.H.1    Mirollo, R.E.2
  • 35
    • 0001293553 scopus 로고
    • Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated
    • SZNITMAN, A.-S. (1984). Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal. 56 311-336
    • (1984) J. Funct. Anal. , vol.56 , pp. 311-336
    • Sznitman, A.-S.1
  • 36
    • 0001105004 scopus 로고
    • Topics in propagation of chaos
    • In École D'Été de Probabilités de Saint-Flour XIX- 1989, Springer, Berlin
    • SZNITMAN, A.-S. (1991). Topics in propagation of chaos. In École D'Été de Probabilités de Saint-Flour XIX - 1989. Lecture Notes in Math. 1464 165-251. Springer, Berlin.
    • (1991) Lecture Notes in Math. , vol.1464 , pp. 165-251
    • Sznitman, A.-S.1
  • 38
    • 84870340226 scopus 로고    scopus 로고
    • Limits and dynamics of stochastic neuronal networks with random heterogeneous delays
    • TOUBOUL, J. (2012). Limits and dynamics of stochastic neuronal networks with random heterogeneous delays. J. Stat. Phys. 149 569-597.
    • (2012) J. Stat. Phys. , vol.149 , pp. 569-597
    • Touboul, J.1
  • 40
    • 84875033427 scopus 로고    scopus 로고
    • Topological and dynamical complexity of random neural networks
    • WAINRIB, G. and TOUBOUL, J. (2013). Topological and dynamical complexity of random neural networks. Phys. Rev. Lett. 110 118101.
    • (2013) Phys. Rev. Lett. , vol.110 , pp. 118101
    • Wainrib, G.1    Touboul, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.