-
1
-
-
0036475447
-
A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking
-
February
-
S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-line non-linear/non-gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174-188, February 2002.
-
(2002)
IEEE Transactions on Signal Processing
, vol.50
, Issue.2
, pp. 174-188
-
-
Arulampalam, S.1
Maskell, S.2
Gordon, N.3
Clapp, T.4
-
3
-
-
70350606550
-
Robust real-time visual tracking using pixel-wise posteriors
-
C. Bibby and I. Reid. Robust real-time visual tracking using pixel-wise posteriors. In Proceedings of ECCV, 2008.
-
(2008)
Proceedings of ECCV
-
-
Bibby, C.1
Reid, I.2
-
4
-
-
21244492850
-
Real-time speaker tracking using particle filter sensor fusion
-
March
-
Y. Chen and Y. Rui. Real-time speaker tracking using particle filter sensor fusion. Proceedings of the IEEE, 92(3):485-494, March 2004.
-
(2004)
Proceedings of the IEEE
, vol.92
, Issue.3
, pp. 485-494
-
-
Chen, Y.1
Rui, Y.2
-
5
-
-
0002165558
-
Rao-blackwellised particle filtering for dynamic Bayesian networks
-
A. Doucet, N. de Freitas, K. Murphy, and S. Russel. Rao-blackwellised particle filtering for dynamic bayesian networks. In UAI, 2000.
-
(2000)
UAI
-
-
Doucet, A.1
De Freitas, N.2
Murphy, K.3
Russel, S.4
-
7
-
-
34249948812
-
Multi-object trajectory tracking
-
M. Han, W. Xu, H. Tao, and Y Gong. Multi-object trajectory tracking. Machine Vision Applications, 18:221-232, 2007.
-
(2007)
Machine Vision Applications
, vol.18
, pp. 221-232
-
-
Han, M.1
Xu, W.2
Tao, H.3
Gong, Y.4
-
8
-
-
78650916950
-
Imagery library for intelligent detection systems (i-lids)
-
HOSDB
-
HOSDB. Imagery library for intelligent detection systems (i-lids). IEEE Conf. on Crime and Security, 2006.
-
(2006)
IEEE Conf. on Crime and Security
-
-
-
11
-
-
28044451749
-
MCMC-based particle filtering for tracking a variable number of interacting targets
-
November
-
Z. Khan, T. Balch, and F Dellaert. MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(11):1805-1819, November 2005.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.11
, pp. 1805-1819
-
-
Khan, Z.1
Balch, T.2
Dellaert, F.3
-
12
-
-
56649117175
-
An adaptive mixture color model for robust visual tracking
-
A. Lehuger, P. Lechat, and P. Perez. An adaptive mixture color model for robust visual tracking. In Proceedings of ICIP, pages 573-576, 2006.
-
(2006)
Proceedings of ICIP
, pp. 573-576
-
-
Lehuger, A.1
Lechat, P.2
Perez, P.3
-
13
-
-
34948822339
-
Adaptive multi-feature tracking in a particle filtering framework
-
October
-
E. Maggio, F. Smeraldi, and A. Cavallaro. Adaptive multi-feature tracking in a particle filtering framework. IEEE Transactions on Circuits and Systems for Video Technology, 17(10):1348-1359, October 2007.
-
(2007)
IEEE Transactions on Circuits and Systems for Video Technology
, vol.17
, Issue.10
, pp. 1348-1359
-
-
Maggio, E.1
Smeraldi, F.2
Cavallaro, A.3
-
14
-
-
42449107443
-
Dependent multiple cue integration for robust tracking
-
April
-
F. M. Noguer, A. Sanfeliu, and D. Samaras. Dependent multiple cue integration for robust tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30 (4):670-685, April 2008.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, Issue.4
, pp. 670-685
-
-
Noguer, F.M.1
Sanfeliu, A.2
Samaras, D.3
-
16
-
-
13344250690
-
Data fusion for visual tracking with particles
-
P. Perez, J. Vermaak, and A. Blake. Data fusion for visual tracking with particles. Proceedings of the IEEE, 92(3):495-513, 2004.
-
(2004)
Proceedings of the IEEE
, vol.92
, Issue.3
, pp. 495-513
-
-
Perez, P.1
Vermaak, J.2
Blake, A.3
-
17
-
-
39749173057
-
Incremental learning for robust visual tracking
-
D. Ross, J. Lim, R. S. Lin, and M. H. Yang. Incremental learning for robust visual tracking. International Journal of Computer Vision, 77:125-141, 2008.
-
(2008)
International Journal of Computer Vision
, vol.77
, pp. 125-141
-
-
Ross, D.1
Lim, J.2
Lin, R.S.3
Yang, M.H.4
-
18
-
-
50649099635
-
Co-tracking using semi-supervised support vector machines
-
F Tang, S. Brennan, Q. Zhao, and H. Tao. Co-tracking using semi-supervised support vector machines. In Proceedigns of ICCV, 2007.
-
(2007)
Proceedigns of ICCV
-
-
Tang, S.F.1
Brennan, Q.Z.2
Tao, H.3
-
19
-
-
0035279074
-
An integrated Bayesian approach to layer extraction from image sequences
-
March
-
P. Torr, R. Szelinski, and P. Anandan. An integrated bayesian approach to layer extraction from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(3):297-303, March 2001.
-
(2001)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.23
, Issue.3
, pp. 297-303
-
-
Torr, P.1
Szelinski, R.2
Anandan, P.3
-
20
-
-
79955750805
-
An introduction to the Kalman filter
-
University of North Carolina at Chapel Hill
-
G. Welch and G. Bishop. An introduction to the kalman filter. Technical Report TR 95-041, University of North Carolina at Chapel Hill, 2006.
-
(2006)
Technical Report TR 95-041
-
-
Welch, G.1
Bishop, G.2
-
22
-
-
77951204037
-
Online tracking and reacquisition using co-trained generative and discriminative trackers
-
Q. Yu, T. B. Dinh, and G Medioni. Online tracking and reacquisition using co-trained generative and discriminative trackers. In Proceedings of ECCV, 2008.
-
(2008)
Proceedings of ECCV
-
-
Yu, Q.1
Dinh, T.B.2
Medioni, G.3
-
24
-
-
33745456231
-
-
Technical report, University of Wisconsin-Madison Department of Computer Science
-
X. Zhu. Semi-supervised learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Science.
-
Semi-supervised Learning Literature Survey
-
-
Zhu, X.1
|