메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

A neural-network-based approach to white blood cell classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BASOPHIL; BLOOD SMEAR; CELL GRANULE; CELL NUCLEUS; CELL STRUCTURE; CLASSIFICATION ALGORITHM; COLOR; CYTOPLASM; EOSINOPHIL; FEATURE EXTRACTION; GEOMETRY; HISTOGRAM; HYPERRECTANGULAR COMPOSITE NEURAL NETWORK; LEUKOCYTE; LYMPHOCYTE; MONOCYTE; NEUTROPHIL; PATTERN RECOGNITION; PERCEPTRON; SEGMENTATION; SENSITIVITY AND SPECIFICITY; SUPPORT VECTOR MACHINE; CLASSIFICATION; HUMAN;

EID: 84898791101     PISSN: None     EISSN: 1537744X     Source Type: Journal    
DOI: 10.1155/2014/796371     Document Type: Article
Times cited : (124)

References (28)
  • 4
    • 0015360631 scopus 로고
    • The classification of white blood cells
    • I. T. Young, "The classification of white blood cells," IEEE Transactions on Biomedical Engineering, vol. 19, no. 4, pp. 291-298, 1972.
    • (1972) IEEE Transactions on Biomedical Engineering , vol.19 , Issue.4 , pp. 291-298
    • Young, I.T.1
  • 9
    • 34248575676 scopus 로고    scopus 로고
    • Morphological granulometric features of nucleus in automatic bone marrow white blood cell classification
    • DOI 10.1109/TITB.2007.892694
    • N. T. UmponandS.Dhompongsa, "Morphological granulometric features of nucleus in automatic bone marrow white blood cell classification," IEEE Transactions on Information Technology in Biomedicine, vol. 11, no. 3, pp. 353-359, 2007. (Pubitemid 46746186)
    • (2007) IEEE Transactions on Information Technology in Biomedicine , vol.11 , Issue.3 , pp. 353-359
    • Theera-Umpon, N.1    Dhompongsa, S.2
  • 11
    • 67649631501 scopus 로고    scopus 로고
    • Application of support vector machine and genetic algorithm for improved blood cell recognition
    • S. Osowski, R. Siroic, T. Markiewicz, and K. Siwek, "Application of support vector machine and genetic algorithm for improved blood cell recognition," IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 7, pp. 2159-2168, 2009.
    • (2009) IEEE Transactions on Instrumentation and Measurement , vol.58 , Issue.7 , pp. 2159-2168
    • Osowski, S.1    Siroic, R.2    Markiewicz, T.3    Siwek, K.4
  • 14
    • 0021522236 scopus 로고
    • Iterative segmentation method based on a contextual color and shape criterion
    • J. M. Chassery and C. Garbay, "An iterative segmentation method based on contextual color and shape criterion," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 794-800, 1984. (Pubitemid 15453715)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 794-800
    • Chassery, J.M.1    Garbay, C.2
  • 16
    • 84898769882 scopus 로고    scopus 로고
    • Segmentation technique for acute leukemia blood cells images using saturation component and moving l-mean clustering procedures
    • N. Hazlyna and M. Y. Mashor, "Segmentation technique for acute leukemia blood cells images using saturation component and moving l-mean clustering procedures," International Journal of Electrical, Electronic Engineering and Technology, vol. 1, pp. 23-35, 2011.
    • (2011) International Journal of Electrical, Electronic Engineering and Technology , vol.1 , pp. 23-35
    • Hazlyna, N.1    Mashor, M.Y.2
  • 19
    • 33750067969 scopus 로고    scopus 로고
    • A method based on multispectral imaging technique for White Blood Cell segmentation
    • DOI 10.1016/j.compbiomed.2005.10.003, PII S0010482505001204
    • N. Guo, L. Zeng, andQ.Wu, "Amethod based onmultispectral imaging technique for white blood cell segmentation," Computers in Biology and Medicine, vol. 37, no. 1, pp. 70-76, 2007. (Pubitemid 44584248)
    • (2007) Computers in Biology and Medicine , vol.37 , Issue.1 , pp. 70-76
    • Guo, N.1    Zeng, L.2    Wu, Q.3
  • 21
    • 84898799598 scopus 로고    scopus 로고
    • CellaVision Inc.
    • CellaVision Inc., 2011, http://www.cellavision.com/.
    • (2011)
  • 22
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • DOI 10.1109/TPAMI.2002.1017623
    • T. Ojala, M. Pietikäinen, and T. Mäenpää, "Multiresolution gray-scale and rotation invariant texture classificationwith local binary patterns," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, 2002. (Pubitemid 34835471)
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 25
    • 0028658484 scopus 로고
    • Use of neural networks as medical diagnosis expert systems
    • M. C. Su, "Use of neural networks as medical diagnosis expert systems," Computers in Biology and Medicine, vol. 24, no. 6, pp. 419-429, 1994.
    • (1994) Computers in Biology and Medicine , vol.24 , Issue.6 , pp. 419-429
    • Su, M.C.1
  • 26
    • 0032143769 scopus 로고    scopus 로고
    • A neuro-fuzzy approach to speech recognition without time alignment
    • PII S01650114X96003752
    • M. C. Su, C. T. Hsieh, and C. Chin, "A neuro-fuzzy approach to speech recognition without time alignment," Fuzzy Sets and Systems, vol. 98, no. 1, pp. 33-41, 1998. (Pubitemid 128654912)
    • (1998) Fuzzy Sets and Systems , vol.98 , Issue.1 , pp. 33-41
    • Su, M.-C.1    Hsieh, C.-T.2    Chin, C.-C.3
  • 27
    • 0000542956 scopus 로고    scopus 로고
    • Neural-network-based fuzzy model and its application to transient stability prediction in power systems
    • M. C. Su, "Neural-network-based fuzzy model and its application to transient stability prediction in power systems," IEEE Transactions on Systems, Man and Cybernetics C, vol. 29, no. 1, pp. 149-157, 1999.
    • (1999) IEEE Transactions on Systems, Man and Cybernetics C , vol.29 , Issue.1 , pp. 149-157
    • Su, M.C.1
  • 28
    • 80052832794 scopus 로고    scopus 로고
    • Application of neural networks for detecting erroneous tax reports from construction companies
    • J.H.Chen,M. C. Su,C.Y.Chen, F.H.Hsu, andC.C.Wu, "Application of neural networks for detecting erroneous tax reports from construction companies," Automation in Construction, vol. 20, no. 7, pp. 935-939, 2011.
    • (2011) Automation in Construction , vol.20 , Issue.7 , pp. 935-939
    • Chen, J.H.1    Su, M.C.2    Chen, C.Y.3    Hsu, F.H.4    Wu, C.C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.