메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1281-1288

A non-parametric bayesian network prior of human pose

Author keywords

Bayesian network; compositionality; non parametric; pose prior; real time; structure learning

Indexed keywords

GESTURE RECOGNITION; MOTION ESTIMATION;

EID: 84898788551     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.162     Document Type: Conference Paper
Times cited : (45)

References (27)
  • 2
    • 0032293266 scopus 로고    scopus 로고
    • Tracking people with twists and exponential maps
    • C. Bregler and J. Malik. Tracking people with twists and exponential maps. CVPR, 1998.
    • (1998) CVPR
    • Bregler, C.1    Malik, J.2
  • 3
    • 84898801480 scopus 로고    scopus 로고
    • Nonparametric density estimation for human pose tracking
    • T. Brox, B. Rosenhahn, U. G. Kersting, and D. Cremers. Nonparametric density estimation for human pose tracking. DAGM, 2006.
    • (2006) DAGM
    • Brox, T.1    Rosenhahn, B.2    Kersting, U.G.3    Cremers, D.4
  • 4
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory, 1968.
    • (1968) IEEE Trans. Inf. Theory
    • Chow, C.1    Liu, C.2
  • 6
    • 70450141089 scopus 로고    scopus 로고
    • Gaussian process latent variable models for human pose estimation
    • C. Ek, P. Torr, and N. Lawrence. Gaussian Process Latent Variable Models for Human Pose Estimation. MLMI, 2007.
    • (2007) MLMI
    • Ek, C.1    Torr, P.2    Lawrence, N.3
  • 7
    • 0442312138 scopus 로고    scopus 로고
    • Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking
    • A. Elgammal, R. Duraiswami, and L. Davis. Efficient kernel density estimation using the fast Gauss transform with applications to color modeling and tracking. PAMI, 2003.
    • (2003) PAMI
    • Elgammal, A.1    Duraiswami, R.2    Davis, L.3
  • 9
    • 10044252413 scopus 로고    scopus 로고
    • Nonparametric density estimation: Toward computational tractability
    • A. Gray and A. Moore. Nonparametric density estimation: Toward computational tractability. SIAM Data Mining, 2003.
    • (2003) SIAM Data Mining
    • Gray, A.1    Moore, A.2
  • 10
    • 79957448130 scopus 로고    scopus 로고
    • Gaussian-like spatial priors for articulated tracking
    • S. Hauberg, S. Sommer, and K. S. Pedersen. Gaussian-like spatial priors for articulated tracking. ECCV, 2010.
    • (2010) ECCV
    • Hauberg, S.1    Sommer, S.2    Pedersen, K.S.3
  • 15
    • 33745939723 scopus 로고    scopus 로고
    • Beyond trees: Commonfactor models for 2D human pose recovery
    • X. Lan and D. P. Huttenlocher. Beyond trees: Commonfactor models for 2D human pose recovery. ICCV, 2005.
    • (2005) ICCV
    • Lan, X.1    Huttenlocher, D.P.2
  • 16
    • 34948844580 scopus 로고    scopus 로고
    • Gaussian process latent variable models for visualisation of high dimensional data
    • N. Lawrence. Gaussian process latent variable models for visualisation of high dimensional data. NIPS, 2003.
    • (2003) NIPS
    • Lawrence, N.1
  • 17
    • 33645973862 scopus 로고    scopus 로고
    • Human upper body pose estimation in static images
    • M.W. Lee and I. Cohen. Human upper body pose estimation in static images. ECCV, 2004.
    • (2004) ECCV
    • Lee, M.W.1    Cohen, I.2
  • 18
    • 84898337375 scopus 로고    scopus 로고
    • People tracking with the Laplacian eigenmaps latent variable model
    • Z. Lu, M. Á. Carreira-Perpiñán, and C. Sminchisescu. People tracking with the Laplacian eigenmaps latent variable model. NIPS, 2007.
    • (2007) NIPS
    • Lu, Z.1    Carreira-Perpinán, M.A.2    Sminchisescu, C.3
  • 21
    • 84859270367 scopus 로고    scopus 로고
    • Loose-limbed people: Estimating 3D human pose and motion using non-parametric belief propagation
    • L. Sigal, M. Isard, H. W. Haussecker, and M. J. Black. Loose-limbed people: Estimating 3D human pose and motion using non-parametric belief propagation. IJCV, 2012.
    • (2012) IJCV
    • Sigal, L.1    Isard, M.2    Haussecker, H.W.3    Black, M.J.4
  • 22
    • 33646380511 scopus 로고    scopus 로고
    • Sparse Gaussian processes using pseudo-inputs
    • E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. NIPS, 2006.
    • (2006) NIPS
    • Snelson, E.1    Ghahramani, Z.2
  • 23
    • 77956001537 scopus 로고    scopus 로고
    • Dynamical binary latent variable models for 3D human pose tracking
    • G. W. Taylor, L. Sigal, D. J. Fleet, and G. E. Hinton. Dynamical binary latent variable models for 3D human pose tracking. CVPR, 2010.
    • (2010) CVPR
    • Taylor, G.W.1    Sigal, L.2    Fleet, D.J.3    Hinton, G.E.4
  • 24
    • 33845583192 scopus 로고    scopus 로고
    • 3D people tracking with Gaussian process dynamical models
    • R. Urtasun, D. Fleet, and P.Fua. 3D people tracking with Gaussian process dynamical models. CVPR, 2006.
    • (2006) CVPR
    • Urtasun, R.1    Fleet, D.2    Fua, P.3
  • 26
    • 0344551865 scopus 로고    scopus 로고
    • Improved fast Gauss transform and efficient kernel density estimation
    • C. Yang. Improved fast Gauss transform and efficient kernel density estimation. ICCV, 2003.
    • (2003) ICCV
    • Yang, C.1
  • 27
    • 77955988492 scopus 로고    scopus 로고
    • Modeling mutual context of object and human pose in human-object interaction activities
    • B. Yao and F.-F. Li. Modeling mutual context of object and human pose in human-object interaction activities. CVPR, 2010.
    • (2010) CVPR
    • Yao, B.1    Li, F.-F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.