메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3384-3391

Fast sparsity-based orthogonal dictionary learning for image restoration

Author keywords

dictionary learning; image restoration; sparse representation

Indexed keywords

COMPUTATIONAL EFFICIENCY; LEARNING SYSTEMS;

EID: 84898778269     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.420     Document Type: Conference Paper
Times cited : (103)

References (31)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-svd: An algorithm for designing of overcomplete dictionaries for sparse representation
    • M. Aharon and M. E. Bruckstein. K-svd: An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Processing, 54(11), 2006.
    • (2006) IEEE Trans. Signal Processing , vol.54 , pp. 11
    • Aharon, M.1    Bruckstein, M.E.2
  • 3
    • 38949172340 scopus 로고    scopus 로고
    • A framelet-based image inpainting algorith
    • J. Cai, R. Chan, and Z. Shen. A framelet-based image inpainting algorith. Appl. Comp. Harm. Anal., 24(2), 2008.
    • (2008) Appl. Comp. Harm. Anal. , vol.24 , pp. 2
    • Cai, J.1    Chan, R.2    Shen, Z.3
  • 5
    • 84863041904 scopus 로고    scopus 로고
    • Framelet based blind image deblurring from a single image
    • J. Cai, H. Ji, C. Liu, and Z. Shen. Framelet based blind image deblurring from a single image. IEEE Trans. Image Processing, 21(2):565-572, 2012.
    • (2012) IEEE Trans. Image Processing , vol.21 , Issue.2 , pp. 565-572
    • Cai, J.1    Ji, H.2    Liu, C.3    Shen, Z.4
  • 6
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-d transform-domain collaborative filtering
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Processing, 16(8):2080-2095, 2007.
    • (2007) IEEE Trans. Image Processing , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 7
    • 0000133685 scopus 로고
    • Ten Lectures on Wavelets
    • I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.
    • (1992) SIAM
    • Daubechies, I.1
  • 8
    • 0242573570 scopus 로고    scopus 로고
    • Framelets: Mrabased constructions of wavelet frames
    • I. Daubechies, B. Han, A. Ron, and Z. Shen. Framelets: Mrabased constructions of wavelet frames. Appl. Comp. Harm. Anal., 14(1):1-46, 2003.
    • (2003) Appl. Comp. Harm. Anal. , vol.14 , Issue.1 , pp. 1-46
    • Daubechies, I.1    Han, B.2    Ron, A.3    Shen, Z.4
  • 9
    • 84898473966 scopus 로고    scopus 로고
    • Image denoising with patch based pca: Local versus global
    • C.-A. Deledalle, J. Salmon, and A. S. Dalalyan. Image denoising with patch based pca: local versus global. In BMVC, 2011.
    • (2011) BMVC
    • Deledalle, C.-A.1    Salmon, J.2    Dalalyan, A.S.3
  • 10
    • 80052896677 scopus 로고    scopus 로고
    • Sparsity-based image denoising via dictionary learning and structured clustering
    • W. Dong, X. Li, L. Zhang, and G. Shi. Sparsity-based image denoising via dictionary learning and structured clustering. In CVPR, 2011.
    • (2011) CVPR
    • Dong, W.1    Li, X.2    Zhang, L.3    Shi, G.4
  • 11
    • 0037418225 scopus 로고    scopus 로고
    • Optimally sparse representation in general (non-orthogonal) dictionary via-1 minimization
    • D. Donoho and M. Elad. Optimally sparse representation in general (non-orthogonal) dictionary via-1 minimization. PNAS, 100:2197-2202, 2002.
    • (2002) PNAS , vol.100 , pp. 2197-2202
    • Donoho, D.1    Elad, M.2
  • 12
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Processing, 15(12):3736-3745, 2006.
    • (2006) IEEE Trans. Image Processing , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 14
    • 80052901219 scopus 로고    scopus 로고
    • Learning a dicscriminative dictionary for sparse coding via label consistent K-SVD
    • Z. Jiang, Z. Lin, and L. Davis. Learning a dicscriminative dictionary for sparse coding via label consistent K-SVD. In CVPR, 2011.
    • (2011) CVPR
    • Jiang, Z.1    Lin, Z.2    Davis, L.3
  • 15
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural computation, 12(2):337-365, 2000.
    • (2000) Neural Computation , vol.12 , Issue.2 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 16
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. JMLR, 11, 2010.
    • (2010) JMLR , vol.11
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 17
    • 77952739016 scopus 로고    scopus 로고
    • Non-local sparse models for image restoration
    • IEEE
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In ICCV, pages 2272-2279. IEEE, 2009.
    • (2009) ICCV , pp. 2272-2279
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4    Zisserman, A.5
  • 22
    • 70350071160 scopus 로고    scopus 로고
    • EK-SVD: Optimized dictionary design for sparse representations
    • R. Mazhar and P. D. Gader. EK-SVD: Optimized dictionary design for sparse representations. In ICPR, 2008.
    • (2008) ICPR
    • Mazhar, R.1    Gader, P.D.2
  • 23
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by vi?
    • B. A. Olshausen, D. J. Field, et al. Sparse coding with an overcomplete basis set: A strategy employed by vi? Vision research, 37(23):3311-3326, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3326
    • Olshausen, B.A.1    Field, D.J.2
  • 26
    • 80052341119 scopus 로고    scopus 로고
    • Efficient implementation of the k-svd algorithm using batch orthogonal matching pursuit
    • R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient implementation of the k-svd algorithm using batch orthogonal matching pursuit. CS Technion, 2008.
    • (2008) CS Technion
    • Rubinstein, R.1    Zibulevsky, M.2    Elad, M.3
  • 27
    • 80052910914 scopus 로고    scopus 로고
    • A non-convex relaxation approach to sparse dictionary learning
    • J. Shi, X. Ren, G. Dai, J.Wang, and Z. Zhang. A non-convex relaxation approach to sparse dictionary learning. In CVPR, 2011.
    • (2011) CVPR
    • Shi, J.1    Ren, X.2    Dai, G.3    Wang, J.4    Zhang, Z.5
  • 28
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory, 50(10), 2004.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , pp. 10
    • Tropp, A.1
  • 29
    • 74449091858 scopus 로고    scopus 로고
    • Two-stage image denoising by principal component analysis with local pixel grouping
    • L. Zhang, W. Dong, D. Zhang, and G. Shi. Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognition, 43(4):1531-1549, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.4 , pp. 1531-1549
    • Zhang, L.1    Dong, W.2    Zhang, D.3    Shi, G.4
  • 30
    • 77955998411 scopus 로고    scopus 로고
    • Discriminative k-SVD for dictionary learning in face recognition
    • Q. Zhang and B. Li. Discriminative k-SVD for dictionary learning in face recognition. In CVPR, 2010.
    • (2010) CVPR
    • Zhang, Q.1    Li, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.