메뉴 건너뛰기




Volumn 49, Issue 2, 2014, Pages 119-129

A Computationally Efficient State Space Approach to Estimating Multilevel Regression Models and Multilevel Confirmatory Factor Models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84898751577     PISSN: 00273171     EISSN: None     Source Type: Journal    
DOI: 10.1080/00273171.2013.866537     Document Type: Article
Times cited : (8)

References (22)
  • 1
    • 0142169443 scopus 로고    scopus 로고
    • Estimating multilevel linear models as structural equation models
    • Bauer, D. J. 2003. Estimating multilevel linear models as structural equation models. Journal of Educational and Behavioral Statistics, 28: 135 - 167.
    • (2003) Journal of Educational and Behavioral Statistics , vol.28 , pp. 135-167
    • Bauer, D.J.1
  • 3
    • 77951663345 scopus 로고    scopus 로고
    • Equivalence and differences between structural equation modeling and state-space modeling techniques
    • Chow, S.-M., Ho, M. -H. R., Hamaker, E. L. and Dolan, C. V. 2010. Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling, 17: 303 - 332.
    • (2010) Structural Equation Modeling , vol.17 , pp. 303-332
    • Chow, S.-M.1    Ho, M.-H.R.2    Hamaker, E.L.3    Dolan, C.V.4
  • 4
    • 0842285954 scopus 로고    scopus 로고
    • Have multilevel models been structural equation models all along?
    • Curran, P. J. 2003. Have multilevel models been structural equation models all along?. Multivariate Behavioral Research, 38: 529 - 569.
    • (2003) Multivariate Behavioral Research , vol.38 , pp. 529-569
    • Curran, P.J.1
  • 7
    • 70350471314 scopus 로고
    • Multilevel mixed linear model analysis using iterative generalized least squares
    • Goldstein, H. 1986. Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73: 43 - 56.
    • (1986) Biometrika , vol.73 , pp. 43-56
    • Goldstein, H.1
  • 10
    • 33646131681 scopus 로고    scopus 로고
    • State-space approach to modeling dynamic processes: Applications in biological and social sciences
    • In: Walls T. A., Schafer J. L., editors New York, NY, New York, NY,: Oxford University Press
    • Ho, M. -H. R., Shumway, R. and Ombao, H. 2006. " State-space approach to modeling dynamic processes: Applications in biological and social sciences ". In Models for intensive longitudinal data, Edited by: Walls, T. A. and Schafer, J. L. 148 - 170. New York, NY: Oxford University Press.
    • (2006) Models for intensive longitudinal data , pp. 148-170
    • Ho, M.-H.R.1    Shumway, R.2    Ombao, H.3
  • 12
    • 0039774099 scopus 로고    scopus 로고
    • A state-space EM algorithm for longitudinal data
    • Icaza, G. and Jones, R. H. 1999. A state-space EM algorithm for longitudinal data. Journal of Time Series Analysis, 20: 537 - 550.
    • (1999) Journal of Time Series Analysis , vol.20 , pp. 537-550
    • Icaza, G.1    Jones, R.H.2
  • 15
    • 62349131463 scopus 로고    scopus 로고
    • Multilevel measurement modeling
    • In: O'Connell A. A., McCoach D. B., editors Charlotte, NC, Charlotte, NC,: Information Age
    • Kamata, A., Bauer, D. J. and Miyazaki, Y. 2008. " Multilevel measurement modeling ". In Multilevel modeling of educational data, Edited by: O'Connell, A. A. and McCoach, D. B. 345 - 388. Charlotte, NC: Information Age.
    • (2008) Multilevel modeling of educational data , pp. 345-388
    • Kamata, A.1    Bauer, D.J.2    Miyazaki, Y.3
  • 16
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and Ware, J. H. 1982. Random-effects models for longitudinal data. Biometrics, 38: 963 - 974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 17
    • 27344454846 scopus 로고    scopus 로고
    • People are variables too: Multilevel structural equations modeling
    • Mehta, P. D. and Neale, M. C. 2005. People are variables too: Multilevel structural equations modeling. Psychological Methods, 10: 259 - 284.
    • (2005) Psychological Methods , vol.10 , pp. 259-284
    • Mehta, P.D.1    Neale, M.C.2
  • 18
    • 84939734910 scopus 로고
    • Evaluation of likelihood functions for Gaussian signals
    • Schweppe, F. 1965. Evaluation of likelihood functions for Gaussian signals. IEEE Transactions on Information Theory, 11: 61 - 70.
    • (1965) IEEE Transactions on Information Theory , vol.11 , pp. 61-70
    • Schweppe, F.1
  • 20
    • 70449562577 scopus 로고    scopus 로고
    • State-space modeling of dynamic psychological processes via the Kalman smoother algorithm: Rationale, finite sample properties, and applications
    • Song, H. and Ferrer, E. 2009. State-space modeling of dynamic psychological processes via the Kalman smoother algorithm: Rationale, finite sample properties, and applications. Structural Equation Modeling, 16: 338 - 363.
    • (2009) Structural Equation Modeling , vol.16 , pp. 338-363
    • Song, H.1    Ferrer, E.2
  • 22
    • 47949098250 scopus 로고    scopus 로고
    • Comparisons of four methods for estimating a dynamic factor model
    • Zhang, Z., Hamaker, E. L. and Nesselroade, J. R. 2008. Comparisons of four methods for estimating a dynamic factor model. Structural Equation Modeling, 15: 377 - 402.
    • (2008) Structural Equation Modeling , vol.15 , pp. 377-402
    • Zhang, Z.1    Hamaker, E.L.2    Nesselroade, J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.