메뉴 건너뛰기




Volumn 16, Issue 2, 2009, Pages 338-363

State-space modeling of dynamic psychological processes via the kalman smoother algorithm: Rationale, finite sample properties, and applications

Author keywords

[No Author keywords available]

Indexed keywords

EXPECTATION-MAXIMIZATION ALGORITHMS; FINITE SAMPLE PROPERTIES; LONG TIME SERIES; PARAMETER ESTIMATE; PSYCHOLOGICAL PROCESS; RESIDUAL VARIANCE; STATE-SPACE MODELING; TRANSITION MATRICES;

EID: 70449562577     PISSN: 10705511     EISSN: None     Source Type: Journal    
DOI: 10.1080/10705510902751432     Document Type: Article
Times cited : (23)

References (43)
  • 1
    • 0002487694 scopus 로고
    • The use of factor analysis in the statistical analysis of time series
    • Anderson, T. W. (1963). The use of factor analysis in the statistical analysis of time series. Psychometrika, 28, 1-25.
    • (1963) Psychometrika , vol.28 , pp. 1-25
    • Anderson, T.W.1
  • 2
    • 0001302989 scopus 로고
    • Problems with EM algorithms for ML factor analysis
    • Bentler, P. M., & Tanaka, J. S. (1983). Problems with EM algorithms for ML factor analysis. Psychometrika, 8, 247-251.
    • (1983) Psychometrika , vol.8 , pp. 247-251
    • Bentler, P.M.1    Tanaka, J.S.2
  • 4
    • 27844464062 scopus 로고    scopus 로고
    • Representing psychological processes with dynamic factor models: Some promising uses and extensions of ARMA time series models
    • In A. Maydeu-Olivares & J. J. McArdle (Eds.), Mahwah, NJ: Lawrence Erlbaum Associates, Inc
    • Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes with dynamic factor models: Some promising uses and extensions of ARMA time series models. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Advances in psychometrics: A festschrift to Roderick P. McDonald (pp. 415-451). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    • (2005) Advances in Psychometrics: A Festschrift to Roderick P. McDonald , pp. 415-451
    • Browne, M.W.1    Nesselroade, J.R.2
  • 6
    • 84925778534 scopus 로고    scopus 로고
    • Developments in the factor analysis of individual time series
    • In R. C. MacCallum & R. Cudeck (Eds.), Mahwah, NJ: Lawrence Erlbaum Associates, Inc
    • Browne, M. W., & Zhang, G. (2007). Developments in the factor analysis of individual time series. In R. C. MacCallum & R. Cudeck (Eds.), Factor analysis at 100: Historical developments and future directions (pp. 265-291). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    • (2007) Factor Analysis at 100: Historical Developments and Future Directions , pp. 265-291
    • Browne, M.W.1    Zhang, G.2
  • 8
    • 0002815738 scopus 로고
    • The structuring of change by P-technique and incremental R-technique
    • In C. W. Harris (Ed.), Madison, WI: University of Wisconsin Press
    • Cattell, R. B. (1963). The structuring of change by P-technique and incremental R-technique. In C. W. Harris (Ed.), Problems in measuring change (pp. 167-198). Madison, WI: University of Wisconsin Press.
    • (1963) Problems in Measuring Change , pp. 167-198
    • Cattell, R.B.1
  • 9
    • 0000922560 scopus 로고
    • P-technique demonstrated in determining psychological source traits in a normal individual
    • Cattell, R. B., Cattell, A. K. S., & Rhymer, R. M. (1947). P-technique demonstrated in determining psychological source traits in a normal individual. Psychometrika, 12, 67-288.
    • (1947) Psychometrika , vol.12 , pp. 67-288
    • Cattell, R.B.1    Cattell, A.K.S.2    Rhymer, R.M.3
  • 10
    • 34547444901 scopus 로고    scopus 로고
    • An unscented Kalman filter approach to the estimation of nonlinear dynamical systems models
    • Chow, S.-M., Ferrer, E., & Nesselroade, J. R. (2007). An unscented Kalman filter approach to the estimation of nonlinear dynamical systems models. Multivariate Behavioral Research, 42(2), 283-321.
    • (2007) Multivariate Behavioral Research , vol.42 , Issue.2 , pp. 283-321
    • Chow, S.-M.1    Ferrer, E.2    Nesselroade, J.R.3
  • 12
    • 84876640835 scopus 로고    scopus 로고
    • Equivalences and differences between structural equation modeling and state-space modeling techniques
    • (in press)
    • Chow, S.-M., Ho, M. H. R., Hamaker, E., & Dolan, C. (in press). Equivalences and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling.
    • Structural Equation Modeling
    • Chow, S.-M.1    Ho, M.H.R.2    Hamaker, E.3    Dolan, C.4
  • 16
    • 0344550505 scopus 로고    scopus 로고
    • Modeling affective processes in dyadic relations via dynamic factor analysis
    • Ferrer, E., & Nesselroade, J. R. (2003). Modeling affective processes in dyadic relations via dynamic factor analysis. Emotion, 3, 344-360.
    • (2003) Emotion , vol.3 , pp. 344-360
    • Ferrer, E.1    Nesselroade, J.R.2
  • 17
    • 0016333007 scopus 로고
    • Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations
    • Gupta, N. K., & Mehra, R. K. (1974). Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations. IEEE Transactions on Automatic Control, AC-19, 774-783.
    • (1974) IEEE Transactions on Automatic Control , vol.AC-19 , pp. 774-783
    • Gupta, N.K.1    Mehra, R.K.2
  • 18
    • 27844472136 scopus 로고    scopus 로고
    • Statistical modeling of the individual: Rationale and application of multivariate stationary time series analysis
    • Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2005). Statistical modeling of the individual: Rationale and application of multivariate stationary time series analysis. Multivariate Behavioral Research, 40, 207-233.
    • (2005) Multivariate Behavioral Research , vol.40 , pp. 207-233
    • Hamaker, E.L.1    Dolan, C.V.2    Molenaar, P.C.M.3
  • 21
    • 33646131681 scopus 로고    scopus 로고
    • State-space approach to modeling dynamic processes: Applications in biological and social sciences
    • In T. A. Walls & J. L. Schafer (Eds.), New York: Oxford University Press
    • Ho, M. R., Shumway, R., & Ombao, H. (2005). State-space approach to modeling dynamic processes: Applications in biological and social sciences. In T. A. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data (pp. 148-170). New York: Oxford University Press.
    • (2005) Models for Intensive Longitudinal Data , pp. 148-170
    • Ho, M.R.1    Shumway, R.2    Ombao, H.3
  • 22
    • 0002655948 scopus 로고
    • Statistical models for the study of change in the single case
    • In C. W. Harris (Ed.), Madison, WI: The University of Wisconsin
    • Holtzman, W. (1963). Statistical models for the study of change in the single case. In C. W. Harris (Ed.), Problems in measuring change (pp. 199-211). Madison, WI: The University of Wisconsin.
    • (1963) Problems in Measuring Change , pp. 199-211
    • Holtzman, W.1
  • 29
    • 84864615423 scopus 로고
    • Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm
    • Meng, X., & Rubin, D. (1991). Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association, 86, 899-909.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 899-909
    • Meng, X.1    Rubin, D.2
  • 30
    • 0000312259 scopus 로고
    • A dynamic factor model for the analysis of multivariate time series
    • Molenaar, P. C. M. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50, 181-202.
    • (1985) Psychometrika , vol.50 , pp. 181-202
    • Molenaar, P.C.M.1
  • 31
    • 0032221578 scopus 로고    scopus 로고
    • A comparison of pseudo-maximum likelihood and asymptotically distribution-free dynamic factor analysis parameter estimation in fitting covariance-structure models to block-Toeplitz matrices representing single-subject multivariate time-series
    • Molenaar, P. C. M., & Nesselroade, J. R. (1998). A comparison of pseudo-maximum likelihood and asymptotically distribution-free dynamic factor analysis parameter estimation in fitting covariance-structure models to block-Toeplitz matrices representing single-subject multivariate time-series. Multivariate Behavioral Research, 33, 313-342.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 313-342
    • Molenaar, P.C.M.1    Nesselroade, J.R.2
  • 32
    • 0242639561 scopus 로고    scopus 로고
    • Fitting nonlinear dynamic models directly to observed time series
    • In K. M. Newell & P. C. M. Molenaar (Eds.), Mahwah, NJ: Lawrence Erlbaum Associates
    • Molenaar, P. C. M., & Raymakers, M. E. J. (1998). Fitting nonlinear dynamic models directly to observed time series. In K. M. Newell & P. C. M. Molenaar (Eds.), Applications of nonlinear dynamics to developmental process modeling (pp. 269-299). Mahwah, NJ: Lawrence Erlbaum Associates.
    • (1998) Applications of Nonlinear Dynamics to Developmental Process Modeling , pp. 269-299
    • Molenaar, P.C.M.1    Raymakers, M.E.J.2
  • 34
    • 0003287762 scopus 로고    scopus 로고
    • Pooling lagged covariance structures based on short, multivariate time series for dynamic factor analysis
    • In R. H. Hoyle (Ed.), Newbury Park, CA: Sage
    • Nesselroade, J. R., & Molenaar, P. C. M. (1999). Pooling lagged covariance structures based on short, multivariate time series for dynamic factor analysis. In R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 223-250). Newbury Park, CA: Sage.
    • (1999) Statistical Strategies for Small Sample Research , pp. 223-250
    • Nesselroade, J.R.1    Molenaar, P.C.M.2
  • 35
    • 84939734910 scopus 로고
    • Evaluations of likelihoods for Gaussian signals
    • Schweppe, F. (1965). Evaluations of likelihoods for Gaussian signals. IEEE Transactions on Information Theory, 11, 61-70.
    • (1965) IEEE Transactions on Information Theory , vol.11 , pp. 61-70
    • Schweppe, F.1
  • 37
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the EM algorithm
    • Shumway, R. H., & Stoffer, D. S. (1982). An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3, 253-264.
    • (1982) Journal of Time Series Analysis , vol.3 , pp. 253-264
    • Shumway, R.H.1    Stoffer, D.S.2
  • 39
    • 0011520418 scopus 로고
    • Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter
    • Stoffer, D. S., & Wall, K. D. (1991). Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter. Journal of the American Statistical Association, 86, 1024-1033.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 1024-1033
    • Stoffer, D.S.1    Wall, K.D.2
  • 40
    • 70449585481 scopus 로고    scopus 로고
    • The Mathworks UK: Author
    • The Mathworks. (2005). MATLAB Digest. UK: Author.
    • (2005) MATLAB Digest
  • 42
    • 12044250188 scopus 로고
    • The study of intraindividual differences by means of dynamic factor models: Rationale, implementation, and interpretation
    • Wood, P., & Brown, D. (1994). The study of intraindividual differences by means of dynamic factor models: Rationale, implementation, and interpretation. Psychological Bulletin, 116, 166-186.
    • (1994) Psychological Bulletin , vol.116 , pp. 166-186
    • Wood, P.1    Brown, D.2
  • 43
    • 70449556851 scopus 로고    scopus 로고
    • Unpublished doctoral dissertation, The Ohio State University, Columbus, OH
    • Zhang, G. (2006). Bootstrap procedures for dynamic factor analysis. Unpublished doctoral dissertation, The Ohio State University, Columbus, OH.
    • (2006) Bootstrap Procedures for Dynamic Factor Analysis
    • Zhang, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.