메뉴 건너뛰기




Volumn M4D, Issue , 2008, Pages 51-90

Unsupervised learning and clustering

Author keywords

[No Author keywords available]

Indexed keywords

CONFORMAL MAPPING; HIERARCHICAL CLUSTERING; LEARNING SYSTEMS; QUALITY CONTROL; SELF ORGANIZING MAPS; UNSUPERVISED LEARNING;

EID: 60349090162     PISSN: 16137736     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-75171-7_3     Document Type: Conference Paper
Times cited : (53)

References (63)
  • 1
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • M. A. Aizerman, E. M. Braverman, and L.I. Rozonoer. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25(6):821-837, 1964.
    • (1964) Automation and Remote Control , vol.25 , Issue.6 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 4
    • 84943228749 scopus 로고
    • Incremental grid growing: Encoding high-dimensional structure into a two-dimensional feature map
    • Piscataway, NJ, IEEE Service Center
    • J. Blackmore and R. Miikkulainen. Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map. In Proceedings of the ICNN'93, International Conference on Neural Networks, Vol. I, pp. 450-455, Piscataway, NJ, 1993. IEEE Service Center.
    • (1993) Proceedings of the ICNN'93, International Conference on Neural Networks , vol.1 , pp. 450-455
    • Blackmore, J.1    Miikkulainen, R.2
  • 11
    • 0035789644 scopus 로고    scopus 로고
    • Co-clustering documents and words using bipartite spectral graph partitioning
    • I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In Knowledge Discovery and Data Mining, pp. 269-274, 2001.
    • (2001) Knowledge Discovery and Data Mining , pp. 269-274
    • Dhillon, I.S.1
  • 15
    • 0023523514 scopus 로고
    • How many clusters are best? - an experiment
    • R. C. Dubes. How many clusters are best? - an experiment. Pattern Recognition, 20(6):645-663, 1987.
    • (1987) Pattern Recognition , vol.20 , Issue.6 , pp. 645-663
    • Dubes, R.C.1
  • 16
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact wellseparated clusters
    • J. C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact wellseparated clusters. Journal of Cybernetics, 3:32-57, 1974.
    • (1974) Journal of Cybernetics , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 17
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy-partitions
    • J. C. Dunn. Well separated clusters and optimal fuzzy-partitions. Journal of Cybernetics, 4:95-104, 1974.
    • (1974) Journal of Cybernetics , vol.4 , pp. 95-104
    • Dunn, J.C.1
  • 18
    • 0001350119 scopus 로고
    • Algebraic connectivity of graphs
    • M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(98):298-305, 1973.
    • (1973) Czechoslovak Mathematical Journal , vol.23 , Issue.98 , pp. 298-305
    • Fiedler, M.1
  • 19
    • 0037963197 scopus 로고    scopus 로고
    • Path-based clustering for grouping of smooth curves and texture segmentation. Pattern Analysis and Machine Intelligence
    • April
    • B. Fischer and J. M. Buhmann. Path-based clustering for grouping of smooth curves and texture segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions, 25(4):513-518, April 2003.
    • (2003) IEEE Transactions , vol.25 , Issue.4 , pp. 513-518
    • Fischer, B.1    Buhmann, J.M.2
  • 20
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency vs interpretability of classifications
    • E. W. Forgy. Cluster analysis of multivariate data: efficiency vs interpretability of classifications. Biometrics, 21:768-769, 1965.
    • (1965) Biometrics , vol.21 , pp. 768-769
    • Forgy, E.W.1
  • 22
    • 0000386644 scopus 로고
    • Growing cell structures-a self-organizing network in k dimensions
    • I. Aleksander and J. Taylor, editors, II, pp, Amsterdam, Netherlands, North-Holland
    • B. Fritzke. Growing cell structures-a self-organizing network in k dimensions. In I. Aleksander and J. Taylor, editors, Artificial Neural Networks, 2, Vol. II, pp. 1051-1056, Amsterdam, Netherlands, 1992. North-Holland.
    • (1992) Artificial Neural Networks , vol.2 , pp. 1051-1056
    • Fritzke, B.1
  • 23
    • 33750126257 scopus 로고
    • Growing grid - a self-organizing network with constant neighborhood range and adaptation strength
    • B. Fritzke. Growing grid - a self-organizing network with constant neighborhood range and adaptation strength. Neural Processing Letters, 2(5):9-13, 1995.
    • (1995) Neural Processing Letters , vol.2 , Issue.5 , pp. 9-13
    • Fritzke, B.1
  • 24
    • 2542613410 scopus 로고    scopus 로고
    • Scalable clustering methods for data mining
    • N. Ye, editor, chapter 10. Mahwah, NJ, Lawrence Erlbaum
    • J. Ghosh. Scalable clustering methods for data mining. In N. Ye, editor, Handbook of Data Mining, chapter 10. Mahwah, NJ, 2003. Lawrence Erlbaum.
    • (2003) Handbook of Data Mining
    • Ghosh, J.1
  • 25
    • 10744227848 scopus 로고    scopus 로고
    • Cluster structure inference based on clustering stability with applications to microarray data analysis
    • C. D. Giurcaneanu and I. Tabus. Cluster structure inference based on clustering stability with applications to microarray data analysis. EURASIP Journal on Applied Signal Processing, 1:64-80, 2004.
    • (2004) EURASIP Journal on Applied Signal Processing , vol.1 , pp. 64-80
    • Giurcaneanu, C.D.1    Tabus, I.2
  • 27
    • 0014869120 scopus 로고
    • An r-dimensional quadratic placement algorithm
    • November
    • K. M. Hall. An r-dimensional quadratic placement algorithm. Management Science, 17(3):219-229, November 1970.
    • (1970) Management Science , vol.17 , Issue.3 , pp. 219-229
    • Hall, K.M.1
  • 30
    • 0001518855 scopus 로고
    • A general statistical framework for accessing categorical
    • L. J. Hubert and J. R. Levin. A general statistical framework for accessing categorical. Psychological Bulletin, 83:1072-1082, 1976.
    • (1976) Psychological Bulletin , vol.83 , pp. 1072-1082
    • Hubert, L.J.1    Levin, J.R.2
  • 31
    • 84980090975 scopus 로고
    • The distribution of flora in the alpine zone
    • P. Jaccard. The distribution of flora in the alpine zone. New Phytologist, 11(2):37-50, 1912.
    • (1912) New Phytologist , vol.11 , Issue.2 , pp. 37-50
    • Jaccard, P.1
  • 32
    • 0002479386 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers 1981-1997
    • S. Kaski, J. Kangas, and T. Kohonen. Bibliography of self-organizing map (SOM) papers 1981-1997. Neural Computing Surveys, 1(3&4):1-176, 1998.
    • (1998) Neural Computing Surveys , vol.1 , Issue.3-4 , pp. 1-176
    • Kaski, S.1    Kangas, J.2    Kohonen, T.3
  • 33
    • 84990479742 scopus 로고
    • An efficient heuristic procedure for partitioning graphs
    • B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49(2):291-308, 1970.
    • (1970) The Bell System Technical Journal , vol.49 , Issue.2 , pp. 291-308
    • Kernighan, B.W.1    Lin, S.2
  • 34
    • 0037399130 scopus 로고    scopus 로고
    • Spectral biclustering of microarray data: Coclustering genes and conditions
    • April
    • Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Research, 13:703-716, April 2003.
    • (2003) Genome Research , vol.13 , pp. 703-716
    • Kluger, Y.1    Basri, R.2    Chang, J.T.3    Gerstein, M.4
  • 36
    • 0030270228 scopus 로고    scopus 로고
    • Engineering applications of the selforganizing map
    • October
    • T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas. Engineering applications of the selforganizing map. Proceedings of the IEEE, 84(10):1358-1384, October 1996.
    • (1996) Proceedings of the IEEE , vol.84 , Issue.10 , pp. 1358-1384
    • Kohonen, T.1    Oja, E.2    Simula, O.3    Visa, A.4    Kangas, J.5
  • 37
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • T. Lange, V. Roth, M. L. Braun, and J. M. Buhmann. Stability-based validation of clustering solutions. Neural Computation, 16(6):1299-1323, 2004.
    • (2004) Neural Computation , vol.16 , Issue.6 , pp. 1299-1323
    • Lange, T.1    Roth, V.2    Braun, M.L.3    Buhmann, J.M.4
  • 39
    • 4644366312 scopus 로고    scopus 로고
    • Cluster validity by bootstrapping partitions
    • Technical Report MSU-CSE-03-5, University of Washington, February
    • M. Law and A. K. Jain. Cluster validity by bootstrapping partitions. Technical Report MSU-CSE-03-5, University of Washington, February 2003.
    • (2003)
    • Law, M.1    Jain, A.K.2
  • 40
    • 0035514007 scopus 로고    scopus 로고
    • Resampling method for unsupervised estimation of cluster validity
    • E. Levine and E. Domany. Resampling method for unsupervised estimation of cluster validity. Neural Computation, 13(11):2573-2593, 2001.
    • (2001) Neural Computation , vol.13 , Issue.11 , pp. 2573-2593
    • Levine, E.1    Domany, E.2
  • 41
    • 1542299386 scopus 로고    scopus 로고
    • Comparing clusterings
    • Technical Report 418, University of Washington
    • M. Meila. Comparing clusterings. Technical Report 418, University of Washington, 2002.
    • (2002)
    • Meila, M.1
  • 42
    • 0030657316 scopus 로고    scopus 로고
    • Exploration of text collections with hierarchical feature maps
    • D. Merkl. Exploration of text collections with hierarchical feature maps. In Research and Development in Information Retrieval, pp. 186-195, 1997.
    • (1997) Research and Development in Information Retrieval , pp. 186-195
    • Merkl, D.1
  • 43
    • 0002320685 scopus 로고
    • Script recognition with hierarchical feature maps
    • R. Miikkulainen. Script recognition with hierarchical feature maps. Connection Science, 2(1&2):83-101, 1990.
    • (1990) Connection Science , vol.2 , Issue.1-2 , pp. 83-101
    • Miikkulainen, R.1
  • 44
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G. W Milligan and M. C. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2): 159-179, 1985.
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 46
    • 7444265318 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum
    • M. Oja, S. Kaski, and T. Kohonen. Bibliography of self-organizing map (SOM) papers: 1998-2001 addendum. Neural Computing Surveys, 3:1-156, 2003.
    • (2003) Neural Computing Surveys , vol.3 , pp. 1-156
    • Oja, M.1    Kaski, S.2    Kohonen, T.3
  • 48
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(66):846-850, 1971.
    • (1971) Journal of the American Statistical Association , vol.66 , Issue.66 , pp. 846-850
    • Rand, W.M.1
  • 49
    • 84890091906 scopus 로고
    • The SOMLib digital library system
    • Proceedings of the 3rd European Conference on Research and Advanced Technology for Digital Libraries ECDL'99, Paris, France, September 22-24, Springer
    • A. Rauber and D. Merkl. The SOMLib digital library system. In Proceedings of the 3rd European Conference on Research and Advanced Technology for Digital Libraries (ECDL'99), Lecture Notes in Computer Science (LNCS 1696), pp. 323-342, Paris, France, September 22-24 1999. Springer.
    • (1696) Lecture Notes in Computer Science (LNCS , pp. 323-342
    • Rauber, A.1    Merkl, D.2
  • 50
    • 0036859375 scopus 로고    scopus 로고
    • The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data
    • November
    • A. Rauber, D. Merkl, and M. Dittenbach. The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks, 13(6): 1331-1341, November 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.6 , pp. 1331-1341
    • Rauber, A.1    Merkl, D.2    Dittenbach, M.3
  • 51
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(1):53-65, 1987.
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , Issue.1 , pp. 53-65
    • Rousseeuw, P.1
  • 52
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • May
    • J. W. Sammon Jr. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18(5):401-109, May 1969.
    • (1969) IEEE Transactions on Computers , vol.C-18 , Issue.5 , pp. 401-109
    • Sammon Jr., J.W.1
  • 53
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 57
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • December
    • A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3:583-617, December 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 58
    • 0012452913 scopus 로고    scopus 로고
    • Cluster validation by prediction strength
    • Technical report, Statistics Department, Stanford University
    • R. Tibshirani, G. Walther, D. Botstein, and P. Brown. Cluster validation by prediction strength. Technical report, Statistics Department, Stanford University, 2001.
    • (2001)
    • Tibshirani, R.1    Walther, G.2    Botstein, D.3    Brown, P.4
  • 59
    • 34547404361 scopus 로고    scopus 로고
    • A comparison of spectral clustering algorithms
    • Technical report, University of Washington
    • D. Verma and M. Meila. A comparison of spectral clustering algorithms. Technical report, University of Washington, 2003.
    • (2003)
    • Verma, D.1    Meila, M.2
  • 62
    • 0037869164 scopus 로고    scopus 로고
    • Criterion functions for document clustering: Experiments and analysis
    • Technical Report 01-040, University of Minnesota, November
    • Y. Zhao and G. Karypis. Criterion functions for document clustering: experiments and analysis. Technical Report 01-040, University of Minnesota, November 2001.
    • (2001)
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.