메뉴 건너뛰기




Volumn 24, Issue 3, 2014, Pages 461-479

Linear quantile mixed models

Author keywords

Best linear predictor; Clarke's derivative; Gaussian quadrature; Hierarchical models

Indexed keywords


EID: 84898543177     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-013-9381-9     Document Type: Article
Times cited : (243)

References (78)
  • 1
    • 84898540538 scopus 로고    scopus 로고
    • Prior elicitation in Bayesian quantile regression for longitudinal data
    • Alhamzawi, R., Yu, K., Pan, J.: Prior elicitation in Bayesian quantile regression for longitudinal data. J. Biometr. Biostat. 2, 1-7 (2011).
    • (2011) J. Biometr. Biostat. , vol.2 , pp. 1-7
    • Alhamzawi, R.1    Yu, K.2    Pan, J.3
  • 2
    • 0037900005 scopus 로고    scopus 로고
    • Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution
    • Azzalini, A., Capitanio, A.: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc., Ser. B, Stat. Methodol. 65, 367-389 (2003).
    • (2003) J. R. Stat. Soc., Ser. B, Stat. Methodol. , vol.65 , pp. 367-389
    • Azzalini, A.1    Capitanio, A.2
  • 4
    • 84941491426 scopus 로고
    • Asymptotic theory of least absolute error regression
    • Bassett, G., Koenker, R.: Asymptotic theory of least absolute error regression. J. Am. Stat. Assoc. 73, 618-622 (1978).
    • (1978) J. Am. Stat. Assoc. , vol.73 , pp. 618-622
    • Bassett, G.1    Koenker, R.2
  • 6
    • 0042885729 scopus 로고    scopus 로고
    • Generalized bootstrap for estimators of minimizers of convex functions
    • Bose, A., Chatterjee, S.: Generalized bootstrap for estimators of minimizers of convex functions. J. Stat. Plan. Inference 117, 225-239 (2003).
    • (2003) J. Stat. Plan. Inference , vol.117 , pp. 225-239
    • Bose, A.1    Chatterjee, S.2
  • 7
    • 84898541624 scopus 로고    scopus 로고
    • A command for Laplace regression
    • in press
    • Bottai, M., Orsini, N.: A command for Laplace regression. Stata J. (2012, in press).
    • (2012) Stata J.
    • Bottai, M.1    Orsini, N.2
  • 8
    • 77956278285 scopus 로고    scopus 로고
    • Laplace regression with censored data
    • Bottai, M., Zhang, J.: Laplace regression with censored data. Biom. J. 52, 487-503 (2010).
    • (2010) Biom. J. , vol.52 , pp. 487-503
    • Bottai, M.1    Zhang, J.2
  • 9
    • 0000025464 scopus 로고
    • Estimating the asymptotic covariance matrix for quantile regression models. A Monte Carlo study
    • Buchinsky, M.: Estimating the asymptotic covariance matrix for quantile regression models. A Monte Carlo study. J. Econom. 68, 303-338 (1995).
    • (1995) J. Econom. , vol.68 , pp. 303-338
    • Buchinsky, M.1
  • 10
    • 80054990834 scopus 로고    scopus 로고
    • A simple approach to quantile regression for panel data
    • Canay, I. A.: A simple approach to quantile regression for panel data. Econom. J. 14, 368-386 (2011).
    • (2011) Econom. J. , vol.14 , pp. 368-386
    • Canay, I.A.1
  • 14
    • 0001562472 scopus 로고
    • Empirical probability plots and statistical inference for nonlinear models in the two-sample case
    • Doksum, K.: Empirical probability plots and statistical inference for nonlinear models in the two-sample case. Ann. Stat. 2, 267-277 (1974).
    • (1974) Ann. Stat. , vol.2 , pp. 267-277
    • Doksum, K.1
  • 16
    • 81955167668 scopus 로고    scopus 로고
    • Quantile regression for longitudinal data based on latent Markov subject-specific parameters
    • Farcomeni, A.: Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat. Comput. 22, 141-152 (2012).
    • (2012) Stat. Comput. , vol.22 , pp. 141-152
    • Farcomeni, A.1
  • 17
    • 82255183912 scopus 로고    scopus 로고
    • Wild bootstrap for quantile regression
    • Feng, X., He, X., Hu, J.: Wild bootstrap for quantile regression. Biometrika 98, 995-999 (2011).
    • (2011) Biometrika , vol.98 , pp. 995-999
    • Feng, X.1    He, X.2    Hu, J.3
  • 18
    • 84993708271 scopus 로고    scopus 로고
    • Multilevel ordinal models for examination grades
    • Fielding, A., Yang, M., Goldstein, H.: Multilevel ordinal models for examination grades. Stat. Model. 3, 127-153 (2003).
    • (2003) Stat. Model. , vol.3 , pp. 127-153
    • Fielding, A.1    Yang, M.2    Goldstein, H.3
  • 19
    • 84862815645 scopus 로고    scopus 로고
    • Quantile regression for longitudinal data with a working correlation model
    • Fu, L., Wang, Y.-G.: Quantile regression for longitudinal data with a working correlation model. Comput. Stat. Data Anal. 56, 2526-2538 (2012).
    • (2012) Comput. Stat. Data Anal. , vol.56 , pp. 2526-2538
    • Fu, L.1    Wang, Y.-G.2
  • 20
    • 79960363444 scopus 로고    scopus 로고
    • Quantile regression for dynamic panel data with fixed effects
    • Galvao, A. F.: Quantile regression for dynamic panel data with fixed effects. J. Econom. 164, 142-157 (2011).
    • (2011) J. Econom. , vol.164 , pp. 142-157
    • Galvao, A.F.1
  • 21
    • 77954033738 scopus 로고    scopus 로고
    • Penalized quantile regression for dynamic panel data
    • Galvao, A. F., Montes-Rojas, G. V.: Penalized quantile regression for dynamic panel data. J. Stat. Plan. Inference 140, 3476-3497 (2010).
    • (2010) J. Stat. Plan. Inference , vol.140 , pp. 3476-3497
    • Galvao, A.F.1    Montes-Rojas, G.V.2
  • 22
    • 0030190203 scopus 로고    scopus 로고
    • Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight
    • Genz, A., Keister, B. D.: Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. J. Comput. Appl. Math. 71, 299-309 (1996).
    • (1996) J. Comput. Appl. Math. , vol.71 , pp. 299-309
    • Genz, A.1    Keister, B.D.2
  • 24
    • 33845446905 scopus 로고    scopus 로고
    • Quantile regression for longitudinal data using the asymmetric Laplace distribution
    • Geraci, M., Bottai, M.: Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8, 140-154 (2007).
    • (2007) Biostatistics , vol.8 , pp. 140-154
    • Geraci, M.1    Bottai, M.2
  • 25
    • 84898540453 scopus 로고    scopus 로고
    • The geographical distribution of the consumption expenditure in Ecuador: estimation and mapping of the regression quantiles
    • Geraci, M., Salvati, N.: The geographical distribution of the consumption expenditure in Ecuador: estimation and mapping of the regression quantiles. Stat. Appl. 19, 167-183 (2007).
    • (2007) Stat. Appl. , vol.19 , pp. 167-183
    • Geraci, M.1    Salvati, N.2
  • 26
    • 0031527874 scopus 로고    scopus 로고
    • Quantile curves without crossing
    • He, X.: Quantile curves without crossing. Am. Stat. 51, 186-192 (1997).
    • (1997) Am. Stat. , vol.51 , pp. 186-192
    • He, X.1
  • 27
    • 0036744531 scopus 로고    scopus 로고
    • Markov chain marginal bootstrap
    • He, X., Hu, F.: Markov chain marginal bootstrap. J. Am. Stat. Assoc. 97, 783-795 (2002).
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 783-795
    • He, X.1    Hu, F.2
  • 29
    • 0042415462 scopus 로고    scopus 로고
    • Some asymptotic results on bivariate quantile splines
    • He, X. M., Portnoy, S.: Some asymptotic results on bivariate quantile splines. J. Stat. Plan. Inference 91, 341-349 (2000).
    • (2000) J. Stat. Plan. Inference , vol.91 , pp. 341-349
    • He, X.M.1    Portnoy, S.2
  • 30
    • 42749090905 scopus 로고    scopus 로고
    • Likelihood approximation by numerical integration on sparse grids
    • Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids. J. Econom. 144, 62-80 (2008).
    • (2008) J. Econom. , vol.144 , pp. 62-80
    • Heiss, F.1    Winschel, V.2
  • 31
    • 0344153904 scopus 로고    scopus 로고
    • Computing the nearest correlation matrix-a problem from finance
    • Higham, N.: Computing the nearest correlation matrix-a problem from finance. IMA J. Numer. Anal. 22, 329-343 (2002).
    • (2002) IMA J. Numer. Anal. , vol.22 , pp. 329-343
    • Higham, N.1
  • 32
    • 0012390345 scopus 로고
    • Estimation of the Pareto law from underreported data: a further analysis
    • Hinkley, D. V., Revankar, N. S.: Estimation of the Pareto law from underreported data: a further analysis. J. Econom. 5, 1-11 (1977).
    • (1977) J. Econom. , vol.5 , pp. 1-11
    • Hinkley, D.V.1    Revankar, N.S.2
  • 33
    • 38049073870 scopus 로고    scopus 로고
    • Nonlinear quantile regression estimation of longitudinal data
    • Karlsson, A.: Nonlinear quantile regression estimation of longitudinal data. Commun. Stat., Simul. Comput. 37, 114-131 (2008).
    • (2008) Commun. Stat., Simul. Comput. , vol.37 , pp. 114-131
    • Karlsson, A.1
  • 34
    • 84862937334 scopus 로고    scopus 로고
    • Semiparametric approach to a random effects quantile regression model
    • Kim, M.-O., Yang, Y.: Semiparametric approach to a random effects quantile regression model. J. Am. Stat. Assoc. 106, 1405-1417 (2011).
    • (2011) J. Am. Stat. Assoc. , vol.106 , pp. 1405-1417
    • Kim, M.-O.1    Yang, Y.2
  • 35
    • 15944420257 scopus 로고    scopus 로고
    • Practical confidence intervals for regression quantiles
    • Kocherginsky, M., He, X., Mu, Y.: Practical confidence intervals for regression quantiles. J. Comput. Graph. Stat. 14, 41-55 (2005).
    • (2005) J. Comput. Graph. Stat. , vol.14 , pp. 41-55
    • Kocherginsky, M.1    He, X.2    Mu, Y.3
  • 36
    • 3442878267 scopus 로고    scopus 로고
    • Quantile regression for longitudinal data
    • Koenker, R.: Quantile regression for longitudinal data. J. Multivar. Anal. 91, 74-89 (2004).
    • (2004) J. Multivar. Anal. , vol.91 , pp. 74-89
    • Koenker, R.1
  • 37
    • 84925105967 scopus 로고    scopus 로고
    • New York: Cambridge University Press
    • Koenker, R.: Quantile Regression. Cambridge University Press, New York (2005).
    • (2005) Quantile Regression
    • Koenker, R.1
  • 38
  • 39
    • 0442278021 scopus 로고    scopus 로고
    • Goodness of fit and related inference processes for quantile regression
    • Koenker, R., Machado, J. A. F.: Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 94, 1296-1310 (1999).
    • (1999) J. Am. Stat. Assoc. , vol.94 , pp. 1296-1310
    • Koenker, R.1    Machado, J.A.F.2
  • 40
    • 1042279262 scopus 로고    scopus 로고
    • Penalized triograms: total variation regularization for bivariate smoothing
    • Koenker, R., Mizera, I.: Penalized triograms: total variation regularization for bivariate smoothing. J. R. Stat. Soc., Ser. B, Stat. Methodol. 66, 145-163 (2004).
    • (2004) J. R. Stat. Soc., Ser. B, Stat. Methodol. , vol.66 , pp. 145-163
    • Koenker, R.1    Mizera, I.2
  • 41
    • 0001652263 scopus 로고
    • Quantile smoothing splines
    • Koenker, R., Ng, P., Portnoy, S.: Quantile smoothing splines. Biometrika 81, 673-680 (1994).
    • (1994) Biometrika , vol.81 , pp. 673-680
    • Koenker, R.1    Ng, P.2    Portnoy, S.3
  • 42
    • 0036071942 scopus 로고    scopus 로고
    • Inference on the quantile regression process
    • Koenker, R., Xiao, Z. J.: Inference on the quantile regression process. Econometrica 70, 1583-1612 (2002).
    • (2002) Econometrica , vol.70 , pp. 1583-1612
    • Koenker, R.1    Xiao, Z.J.2
  • 44
    • 70350637638 scopus 로고    scopus 로고
    • Multitude of Laplace distributions
    • Kozubowski, T. J., Nadarajah, S.: Multitude of Laplace distributions. Stat. Pap. 51, 127-148 (2010).
    • (2010) Stat. Pap. , vol.51 , pp. 127-148
    • Kozubowski, T.J.1    Nadarajah, S.2
  • 45
    • 77953693968 scopus 로고    scopus 로고
    • Robust penalized quantile regression estimation for panel data
    • Lamarche, C.: Robust penalized quantile regression estimation for panel data. J. Econom. 157, 396-498 (2010).
    • (2010) J. Econom. , vol.157 , pp. 396-498
    • Lamarche, C.1
  • 46
    • 77958549649 scopus 로고    scopus 로고
    • Bayesian quantile regression for count data with application to environmental epidemiology
    • Lee, D., Neocleous, T.: Bayesian quantile regression for count data with application to environmental epidemiology. J. R. Stat. Soc., Ser. C, Appl. Stat. 59, 905-920 (2010).
    • (2010) J. R. Stat. Soc., Ser. C, Appl. Stat. , vol.59 , pp. 905-920
    • Lee, D.1    Neocleous, T.2
  • 47
    • 14544302160 scopus 로고    scopus 로고
    • Conditional and marginal models: another view
    • Lee, Y., Nelder, J. A.: Conditional and marginal models: another view. Stat. Sci. 19, 219-228 (2004).
    • (2004) Stat. Sci. , vol.19 , pp. 219-228
    • Lee, Y.1    Nelder, J.A.2
  • 49
    • 79956305419 scopus 로고    scopus 로고
    • Bayesian regularized quantile regression
    • Li, Q., Xi, R., Lin, N.: Bayesian regularized quantile regression. Bayesian Anal. 5, 533-556 (2010).
    • (2010) Bayesian Anal. , vol.5 , pp. 533-556
    • Li, Q.1    Xi, R.2    Lin, N.3
  • 50
    • 0041110742 scopus 로고    scopus 로고
    • Quantile regression methods for longitudinal data with drop-outs: application to CD4 cell counts of patients infected with the human immunodeficiency virus
    • Lipsitz, S. R., Fitzmaurice, G. M., Molenberghs, G., Zhao, L. P.: Quantile regression methods for longitudinal data with drop-outs: application to CD4 cell counts of patients infected with the human immunodeficiency virus. J. R. Stat. Soc., Ser. C, Appl. Stat. 46, 463-476 (1997).
    • (1997) J. R. Stat. Soc., Ser. C, Appl. Stat. , vol.46 , pp. 463-476
    • Lipsitz, S.R.1    Fitzmaurice, G.M.2    Molenberghs, G.3    Zhao, L.P.4
  • 51
    • 71449094734 scopus 로고    scopus 로고
    • Mixed-effects models for conditional quantiles with longitudinal data
    • Liu, Y., Bottai, M.: Mixed-effects models for conditional quantiles with longitudinal data. Int. J. Biostat. 5, 1-22 (2009).
    • (2009) Int. J. Biostat. , vol.5 , pp. 1-22
    • Liu, Y.1    Bottai, M.2
  • 52
    • 84865711636 scopus 로고    scopus 로고
    • Spatial quantile multiple regression using the asymmetric Laplace process
    • Lum, K., Gelfand, A.: Spatial quantile multiple regression using the asymmetric Laplace process. Bayesian Anal. 7, 235-258 (2012).
    • (2012) Bayesian Anal. , vol.7 , pp. 235-258
    • Lum, K.1    Gelfand, A.2
  • 54
    • 20744453543 scopus 로고    scopus 로고
    • The asymptotic distribution of the unconditional quantile estimator under dependence
    • Oberhofer, W., Haupt, H.: The asymptotic distribution of the unconditional quantile estimator under dependence. Stat. Probab. Lett. 73, 243-250 (2005).
    • (2005) Stat. Probab. Lett. , vol.73 , pp. 243-250
    • Oberhofer, W.1    Haupt, H.2
  • 55
    • 0001620867 scopus 로고
    • A resampling method based on pivotal estimating functions
    • Parzen, M., Wei, L., Ying, Z.: A resampling method based on pivotal estimating functions. Biometrika 81, 341-350 (1994).
    • (1994) Biometrika , vol.81 , pp. 341-350
    • Parzen, M.1    Wei, L.2    Ying, Z.3
  • 56
    • 84946045727 scopus 로고
    • Approximations to the log-likelihood function in the nonlinear mixed-effects model
    • Pinheiro, J., Bates, D.: Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Graph. Stat. 4, 12-35 (1995).
    • (1995) J. Comput. Graph. Stat. , vol.4 , pp. 12-35
    • Pinheiro, J.1    Bates, D.2
  • 57
    • 21444460810 scopus 로고    scopus 로고
    • Unconstrained parametrizations for variance-covariance matrices
    • Pinheiro, J. C., Bates, D. M.: Unconstrained parametrizations for variance-covariance matrices. Stat. Comput. 6, 289-296 (1996).
    • (1996) Stat. Comput. , vol.6 , pp. 289-296
    • Pinheiro, J.C.1    Bates, D.M.2
  • 58
    • 33645565987 scopus 로고    scopus 로고
    • Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models
    • Pinheiro, J. C., Chao, E. C.: Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. J. Comput. Graph. Stat. 15, 58-81 (2006).
    • (2006) J. Comput. Graph. Stat. , vol.15 , pp. 58-81
    • Pinheiro, J.C.1    Chao, E.C.2
  • 59
    • 0012806293 scopus 로고    scopus 로고
    • Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation
    • Pourahmadi, M.: Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86, 677-690 (1999).
    • (1999) Biometrika , vol.86 , pp. 677-690
    • Pourahmadi, M.1
  • 60
    • 0000485147 scopus 로고
    • Logarithmic concave measures and functions
    • Prékopa, A.: Logarithmic concave measures and functions. Acta Sci. Math. 34, 334-343 (1973).
    • (1973) Acta Sci. Math. , vol.34 , pp. 334-343
    • Prékopa, A.1
  • 61
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team3-900051-07-0, Vienna: R Foundation for Statistical Computing
    • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2012). ISBN 3-900051-07-0.
    • (2012) R: A Language and Environment for Statistical Computing
  • 62
    • 78049338024 scopus 로고    scopus 로고
    • The normal-Laplace distribution and its relatives
    • N. Balakrishnan, E. Castillo, and J.-M. Sarabia Alegria (Eds.), New York: Birkhäuser Boston
    • Reed, W.: The normal-Laplace distribution and its relatives. In: Balakrishnan, N., Castillo, E., Sarabia Alegria, J.-M. (eds.) Advances in Distribution Theory, Order Statistics, and Inference, pp. 61-74. Birkhäuser Boston, New York (2006).
    • (2006) Advances in Distribution Theory, Order Statistics, and Inference , pp. 61-74
    • Reed, W.1
  • 63
    • 77749264349 scopus 로고    scopus 로고
    • Flexible Bayesian quantile regression for independent and clustered data
    • Reich, B. J., Bondell, H. D., Wang, H. J.: Flexible Bayesian quantile regression for independent and clustered data. Biostatistics 11, 337-352 (2010a).
    • (2010) Biostatistics , vol.11 , pp. 337-352
    • Reich, B.J.1    Bondell, H.D.2    Wang, H.J.3
  • 66
    • 84972496336 scopus 로고
    • That BLUP is a good thing: the estimation of random effects
    • Robinson, G.: That BLUP is a good thing: the estimation of random effects. Stat. Sci. 6, 15-32 (1991).
    • (1991) Stat. Sci. , vol.6 , pp. 15-32
    • Robinson, G.1
  • 67
    • 0004267646 scopus 로고
    • Princeton: Princeton University Press
    • Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970).
    • (1970) Convex Analysis
    • Rockafellar, R.1
  • 71
    • 0033761318 scopus 로고    scopus 로고
    • Safety and efficacy of succimer in toddlers with blood lead levels of 20-44 μg/dL
    • Treatment of Lead-Exposed Children (TLC) Trial Group
    • Treatment of Lead-Exposed Children (TLC) Trial Group: Safety and efficacy of succimer in toddlers with blood lead levels of 20-44 μg/dL. Pediatr. Res. 48, 593-599 (2000).
    • (2000) Pediatr. Res. , vol.48 , pp. 593-599
  • 72
    • 0001351879 scopus 로고
    • Linear programming techniques for regression analysis
    • Wagner, H. M.: Linear programming techniques for regression analysis. J. Am. Stat. Assoc. 54, 206-212 (1959).
    • (1959) J. Am. Stat. Assoc. , vol.54 , pp. 206-212
    • Wagner, H.M.1
  • 73
    • 84866548099 scopus 로고    scopus 로고
    • Bayesian quantile regression for parametric nonlinear mixed effects models
    • Wang, J.: Bayesian quantile regression for parametric nonlinear mixed effects models. Stat. Methods Appl. (2012).
    • (2012) Stat. Methods Appl.
    • Wang, J.1
  • 74
    • 0142042364 scopus 로고    scopus 로고
    • Quantile regression: applications and current research areas
    • Yu, K., Lu, Z., Stander, J.: Quantile regression: applications and current research areas. Statistician 52, 331-350 (2003).
    • (2003) Statistician , vol.52 , pp. 331-350
    • Yu, K.1    Lu, Z.2    Stander, J.3
  • 75
    • 25644438411 scopus 로고    scopus 로고
    • A three-parameter asymmetric Laplace distribution and its extension
    • Yu, K., Zhang, J.: A three-parameter asymmetric Laplace distribution and its extension. Commun. Stat., Theory Methods 34, 1867-1879 (2005).
    • (2005) Commun. Stat., Theory Methods , vol.34 , pp. 1867-1879
    • Yu, K.1    Zhang, J.2
  • 76
    • 0037864315 scopus 로고    scopus 로고
    • Bayesian quantile regression
    • Yu, K. M., Moyeed, R. A.: Bayesian quantile regression. Stat. Probab. Lett. 54, 437-447 (2001).
    • (2001) Stat. Probab. Lett. , vol.54 , pp. 437-447
    • Yu, K.M.1    Moyeed, R.A.2
  • 77
    • 77949724484 scopus 로고    scopus 로고
    • Bayesian quantile regression for longitudinal studies with nonignorable missing data
    • Yuan, Y., Yin, G.: Bayesian quantile regression for longitudinal studies with nonignorable missing data. Biometrics 66, 105-114 (2010).
    • (2010) Biometrics , vol.66 , pp. 105-114
    • Yuan, Y.1    Yin, G.2
  • 78
    • 0042411294 scopus 로고    scopus 로고
    • Restricted regression quantiles
    • Zhao, Q. S.: Restricted regression quantiles. J. Multivar. Anal. 72, 78-99 (2000).
    • (2000) J. Multivar. Anal. , vol.72 , pp. 78-99
    • Zhao, Q.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.