메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Learning beautiful (and ugly) attributes

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION;

EID: 84898448129     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5244/C.27.7     Document Type: Conference Paper
Times cited : (37)

References (36)
  • 1
    • 80052896727 scopus 로고    scopus 로고
    • Automatic attribute discovery and characterization from noisy web data
    • T. Berg, A. Berg, and J. Shih. Automatic attribute discovery and characterization from noisy web data. ECCV, 2010.
    • (2010) ECCV
    • Berg, T.1    Berg, A.2    Shih, J.3
  • 2
    • 48849085774 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS, 2007.
    • (2007) NIPS
    • Bottou, L.1    Bousquet, O.2
  • 5
    • 37849022306 scopus 로고    scopus 로고
    • Studying aesthetics in photographic images using a computational approach
    • R. Datta, D. Joshi, J. Li, and J.Z. Wang. Studying aesthetics in photographic images using a computational approach. In ECCV, 2006.
    • (2006) ECCV
    • Datta, R.1    Joshi, D.2    Li, J.3    Wang, J.Z.4
  • 6
    • 69949167278 scopus 로고    scopus 로고
    • Algorithmic inferencing of aesthetics and emotion in natural images: An exposition
    • R. Datta, J. Li, and J.Z. Wang. Algorithmic inferencing of aesthetics and emotion in natural images: An exposition. In ICIP, 2008.
    • (2008) ICIP
    • Datta, R.1    Li, J.2    Wang, J.Z.3
  • 7
    • 80052879599 scopus 로고    scopus 로고
    • High-level describable attributes for predicting aesthetics and interestingness
    • S. Dhar, V. Ordonez, and T.L. Berg. High-level describable attributes for predicting aesthetics and interestingness. In CVPR, 2011.
    • (2011) CVPR
    • Dhar, S.1    Ordonez, V.2    Berg, T.L.3
  • 8
    • 84866719272 scopus 로고    scopus 로고
    • Discovering localized attributes for fine-grained recognition
    • K. Duan, D. Parikh, D. Crandall, and K. Grauman. Discovering localized attributes for fine-grained recognition. In CVPR, 2012.
    • (2012) CVPR
    • Duan, K.1    Parikh, D.2    Crandall, D.3    Grauman, K.4
  • 10
    • 70450219358 scopus 로고    scopus 로고
    • Learning visual attributes
    • V. Ferrari and A. Zisserman. Learning visual attributes. NIPS, 2007.
    • (2007) NIPS
    • Ferrari, V.1    Zisserman, A.2
  • 11
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 2001.
    • (2001) Machine Learning
    • Hofmann, T.1
  • 12
    • 84875881757 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE TPAMI, 2011.
    • (2011) IEEE TPAMI
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 13
    • 33845591650 scopus 로고    scopus 로고
    • The design of high-level features for photo quality assessment
    • Y. Ke, X. Tang, and F. Jing. The design of high-level features for photo quality assessment. In CVPR, 2006.
    • (2006) CVPR
    • Ke, Y.1    Tang, X.2    Jing, F.3
  • 15
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C.H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 16
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • D.G. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.
    • (1999) ICCV
    • Lowe, D.G.1
  • 17
    • 78650973867 scopus 로고    scopus 로고
    • Photo and video quality evaluation: Focusing on the subject
    • Y. Luo and X. Tang. Photo and video quality evaluation: Focusing on the subject. In ECCV, 2008.
    • (2008) ECCV
    • Luo, Y.1    Tang, X.2
  • 18
    • 84856670353 scopus 로고    scopus 로고
    • Assessing the aesthetic quality of photographs using generic image descriptors
    • L. Marchesotti, F. Perronnin, D. Larlus, and G. Csurka. Assessing the aesthetic quality of photographs using generic image descriptors. In ICCV, 2011.
    • (2011) ICCV
    • Marchesotti, L.1    Perronnin, F.2    Larlus, D.3    Csurka, G.4
  • 19
    • 84898446321 scopus 로고    scopus 로고
    • Learning to rank images using semantic and aesthetic labels
    • N. Murray, L. Marchesotti, and F. Perronnin. Learning to rank images using semantic and aesthetic labels. In BMVC, 2012.
    • (2012) BMVC
    • Murray, N.1    Marchesotti, L.2    Perronnin, F.3
  • 20
    • 84866653001 scopus 로고    scopus 로고
    • Ava: A large-scale database for aesthetic visual analysis
    • N. Murray, L. Marchesotti, and F. Perronnin. Ava: A large-scale database for aesthetic visual analysis. In CVPR, 2012.
    • (2012) CVPR
    • Murray, N.1    Marchesotti, L.2    Perronnin, F.3
  • 21
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering: Analysis and an algorithm. NIPS, 2002.
    • (2002) NIPS
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 22
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 2001.
    • (2001) IJCV
    • Oliva, A.1    Torralba, A.2
  • 23
    • 78650982807 scopus 로고    scopus 로고
    • Training data collection system for a learning-based photographic aesthetic quality inference engine
    • R. Orendovici and J.Z. Wang. Training data collection system for a learning-based photographic aesthetic quality inference engine. In ACM-MM, 2010.
    • (2010) ACM-MM
    • Orendovici, R.1    Wang, J.Z.2
  • 25
    • 80052900722 scopus 로고    scopus 로고
    • Interactively building a discriminative vocabulary of nameable attributes
    • D. Parikh and K. Grauman. Interactively building a discriminative vocabulary of nameable attributes. In CVPR, 2011.
    • (2011) CVPR
    • Parikh, D.1    Grauman, K.2
  • 26
  • 27
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.2
  • 28
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 29
    • 37849034092 scopus 로고    scopus 로고
    • Learning the consensus on visual quality for nextgeneration image management
    • J. Li R. Datta and J. Z. Wang. Learning the consensus on visual quality for nextgeneration image management. In ACM-MM, 2007.
    • (2007) ACM-MM
    • Datta, J.L.R.1    Wang, J.Z.2
  • 31
    • 77955989949 scopus 로고    scopus 로고
    • What helps where- And why? Semantic relatedness for knowledge transfer
    • M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where- And why? semantic relatedness for knowledge transfer. In CVPR, 2010.
    • (2010) CVPR
    • Rohrbach, M.1    Stark, M.2    Szarvas, G.3    Gurevych, I.4    Schiele, B.5
  • 32
    • 84860870468 scopus 로고    scopus 로고
    • Leveraging user comments for aesthetic aware image search reranking
    • J. San Pedro, T. Yeh, and N. Oliver. Leveraging user comments for aesthetic aware image search reranking. In WWW, 2012.
    • (2012) WWW
    • Pedro, J.S.1    Yeh, T.2    Oliver, N.3
  • 33
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Series B (Methodological)
    • R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 1996.
    • (1996) Journal of the Royal Statistical Society
    • Tibshirani, R.1
  • 34
    • 84898919358 scopus 로고    scopus 로고
    • Learning models for object recognition from natural language descriptions
    • J.Wang, K. Markert, and M. Everingham. Learning models for object recognition from natural language descriptions. In BMVC, 2009.
    • (2009) BMVC
    • Wang, J.1    Markert, K.2    Everingham, M.3
  • 35
    • 36849034452 scopus 로고    scopus 로고
    • Image region entropy: A measure of visualness of web images associated with one concept
    • K. Yanai and K. Barnard. Image region entropy: A measure of visualness of web images associated with one concept. In ACM-MM, 2005.
    • (2005) ACM-MM
    • Yanai, K.1    Barnard, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.