메뉴 건너뛰기




Volumn , Issue , 2010, Pages 441-450

Learning kernel-based halfspaces with the zero-one loss

Author keywords

[No Author keywords available]

Indexed keywords

CRYPTOGRAPHIC ASSUMPTIONS; FINITE TIME; HALF SPACES; HARDNESS RESULT; LIPSCHITZ CONSTANT; LOGISTIC REGRESSIONS; LOSS FUNCTIONS; TIME POLYNOMIALS;

EID: 84898062142     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (14)

References (27)
  • 2
    • 84898957627 scopus 로고    scopus 로고
    • For valid generalization, the size of the weights is more important than the size of the network
    • P. L. Bartlett. For valid generalization, the size of the weights is more important than the size of the network. In Advances in Neural Information Processing Systems 9, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9
    • Bartlett, P.L.1
  • 3
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 5
    • 84898064920 scopus 로고    scopus 로고
    • Alternative measures of computational complexity
    • S. Ben-David. Alternative measures of computational complexity. In TAMC, 2006.
    • (2006) TAMC
    • Ben-David, S.1
  • 6
    • 0009067029 scopus 로고    scopus 로고
    • Efficient learning of linear perceptrons
    • S. Ben-David and H. Simon. Efficient learning of linear perceptrons. In NIPS, 2000.
    • (2000) NIPS
    • Ben-David, S.1    Simon, H.2
  • 7
    • 78149346647 scopus 로고    scopus 로고
    • Polynomial regression under arbitrary product distributions
    • E. Blais, R. O'Donnell, and K Wimmer. Polynomial regression under arbitrary product distributions. In COLT, 2008.
    • (2008) COLT
    • Blais, E.1    O'Donnell, R.2    Wimmer, K.3
  • 8
    • 85162035281 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS, pages 161-168, 2008.
    • (2008) NIPS , pp. 161-168
    • Bottou, L.1    Bousquet, O.2
  • 13
    • 80555135310 scopus 로고    scopus 로고
    • On the complexity of linear prediction: Risk bounds, margin bounds, and regularization
    • S.M. Kakade, K. Sridharan, and A. Tewari. On the complexity of linear prediction: Risk bounds, margin bounds, and regularization. In NIPS, 2008.
    • (2008) NIPS
    • Kakade, S.M.1    Sridharan, K.2    Tewari, A.3
  • 15
    • 0026965935 scopus 로고
    • Toward efficient agnostic learning
    • July To appear, Machine Learning
    • M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic learning. In COLT, pages 341-352, July 1992. To appear, Machine Learning.
    • (1992) COLT , pp. 341-352
    • Kearns, M.J.1    Schapire, R.E.2    Sellie, L.M.3
  • 16
    • 35348921036 scopus 로고    scopus 로고
    • Cryptographic hardness for learning intersections of halfspaces
    • Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning intersections of halfspaces. In FOCS, 2006.
    • (2006) FOCS
    • Klivans, A.R.1    Sherstov, A.A.2
  • 17
    • 9444279514 scopus 로고    scopus 로고
    • Simplified PAC-Bayesian margin bounds
    • D. A. McAllester. Simplified PAC-Bayesian margin bounds. In COLT, pages 203-215, 2003.
    • (2003) COLT , pp. 203-215
    • McAllester, D.A.1
  • 18
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 23
    • 34247197035 scopus 로고    scopus 로고
    • Fast rates for support vector machines using Gaussian kernels
    • I. Steinwart and C. Scovel. Fast rates for support vector machines using gaussian kernels. Annals of Statistics, 35:575, 2007.
    • (2007) Annals of Statistics , vol.35 , pp. 575
    • Steinwart, I.1    Scovel, C.2
  • 24
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • A. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32: 135-166, 2004.
    • (2004) Annals of Statistics , vol.32 , pp. 135-166
    • Tsybakov, A.1
  • 26
    • 0003241883 scopus 로고
    • Spline models for observational data
    • G. Wahba. Spline Models for Observational Data. SIAM, 1990.
    • (1990) SIAM
    • Wahba, G.1
  • 27
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annals of Statistics, 32:56-85, 2004.
    • (2004) The Annals of Statistics , vol.32 , pp. 56-85
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.