-
1
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
Belkin, Mikhail, Niyogi, Partha, and Sindhwani, Vikas. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
3
-
-
33947416035
-
Near-optimal signal recovery from random projections: Universal encoding strategies?
-
Candès, Emmanuel J. and Tao, Terence. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406-5425, 2006.
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.12
, pp. 5406-5425
-
-
Candès, E.J.1
Tao, T.2
-
4
-
-
0029195475
-
On the exponential value of labeled samples
-
Castelli, Vittorio and Cover, Thomas M. On the exponential value of labeled samples. Pattern Recognition Letters, 16(1):105-111, 1995.
-
(1995)
Pattern Recognition Letters
, vol.16
, Issue.1
, pp. 105-111
-
-
Castelli, V.1
Cover, T.M.2
-
5
-
-
0001662441
-
The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
-
Castelli, Vittorio and Cover, Thomas M. The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter. IEEE Transactions on Information Theory, 42(6):2102-2117, 1996.
-
(1996)
IEEE Transactions on Information Theory
, vol.42
, Issue.6
, pp. 2102-2117
-
-
Castelli, V.1
Cover, T.M.2
-
6
-
-
84899013173
-
Support vector regression machines
-
Drucker, Harris, Burges, Christopher J. C., Kaufman, Linda, Smola, Alex J., and Vapnik, Vladimir. Support vector regression machines. In NIPS, pp. 155-161, 1996.
-
(1996)
NIPS
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.J.4
Vapnik, V.5
-
7
-
-
77955655063
-
Semi-supervised learning in gigantic image collections
-
Fergus, Rob, Weiss, Yair, and Torralba, Antonio. Semi-supervised learning in gigantic image collections. In NIPS, pp. 522-530, 2009.
-
(2009)
NIPS
, pp. 522-530
-
-
Fergus, R.1
Weiss, Y.2
Torralba, A.3
-
9
-
-
84867121561
-
An empirical feature-based learning algorithm producing sparse approximations
-
Guo, Xin and Zhou, Ding-Xuan. An empirical feature-based learning algorithm producing sparse approximations. Applied and Computational Harmonic Analysis, 2011.
-
(2011)
Applied and Computational Harmonic Analysis
-
-
Guo, X.1
Zhou, D.-X.2
-
11
-
-
78650166948
-
Sparsity in multiple kernel learning
-
Koltchinskii, Vladimir and Yuan, Ming. Sparsity in multiple kernel learning. Annuals of Statistics, 38:3660-3694, 2010.
-
(2010)
Annuals of Statistics
, vol.38
, pp. 3660-3694
-
-
Koltchinskii, V.1
Yuan, M.2
-
12
-
-
85045788563
-
Statistical analysis of semi-supervised regression
-
Lafferty, John D. and Wasserman, Larry A. Statistical analysis of semi-supervised regression. In NIPS, pp. 801-808, 2007.
-
(2007)
NIPS
, pp. 801-808
-
-
Lafferty, J.D.1
Wasserman, L.A.2
-
13
-
-
77955579790
-
Some properties of gaussian reproducing kernel hilbert spaces and their implications for function approximation and learning theory
-
Minh, Ha Quang. Some properties of gaussian reproducing kernel hilbert spaces and their implications for function approximation and learning theory. Constructive Approximation, 32:307-338, 2010.
-
(2010)
Constructive Approximation
, vol.32
, pp. 307-338
-
-
Minh, H.Q.1
-
14
-
-
84862274185
-
Statistical analysis of semi-supervised learning: The limit of infinite unlabeled data
-
Nadler, Boaz, Srebro, Nathan, and Zhou, Xueyuan. Statistical analysis of semi-supervised learning: The limit of infinite unlabeled data. In NIPS, pp. 1330-1338, 2009.
-
(2009)
NIPS
, pp. 1330-1338
-
-
Nadler, B.1
Srebro, N.2
Zhou, X.3
-
16
-
-
34547675831
-
Generalization error bounds in semi-supervised classification under the cluster assumption
-
Rigollet, Philippe. Generalization error bounds in semi-supervised classification under the cluster assumption. Journal of Machine Learning Research, 8:1369-1392, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1369-1392
-
-
Rigollet, P.1
-
17
-
-
70450199207
-
Ridge regression learning algorithm in dual variables
-
Saunders, Craig, Gammerman, Alexander, and Vovk, Volodya. Ridge regression learning algorithm in dual variables. In ICML, pp. 515-521, 1998.
-
(1998)
ICML
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
19
-
-
84863338319
-
Unlabeled data: Now it helps, now it doesn't
-
Singh, Aarti, Nowak, Robert D., and Zhu, Xiaojin. Unlabeled data: Now it helps, now it doesn't. In NIPS, pp. 1513-1520, 2008.
-
(2008)
NIPS
, pp. 1513-1520
-
-
Singh, A.1
Nowak, R.D.2
Zhu, X.3
-
20
-
-
78149362519
-
Semi-supervised learning using sparse eigenfunction bases
-
Sinha, Kaushik and Belkin, Mikhail. Semi-supervised learning using sparse eigenfunction bases. In NIPS, pp. 1687-1695, 2009.
-
(2009)
NIPS
, pp. 1687-1695
-
-
Sinha, K.1
Belkin, M.2
-
22
-
-
33947372892
-
An explicit description of the reproducing kernel hilbert spaces of gaussian rbf kernels
-
Steinwart, Ingo, Hush, Don R., and Scovel, Clint. An explicit description of the reproducing kernel hilbert spaces of gaussian rbf kernels. IEEE Transactions on Information Theory, 52(10):4635-4643, 2006.
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.10
, pp. 4635-4643
-
-
Steinwart, I.1
Hush, D.R.2
Scovel, C.3
-
24
-
-
84864072823
-
Analysis of spectral kernel design based semi-supervised learning
-
Zhang, Tong and Ando, Rie Kubota. Analysis of spectral kernel design based semi-supervised learning. In NIPS, pp. 1601-1608, 2005.
-
(2005)
NIPS
, pp. 1601-1608
-
-
Zhang, T.1
Ando, R.K.2
-
25
-
-
33745456231
-
-
Technical report, Computer Sciences, University of Wisconsin-Madison
-
Zhu, Xiaojin. Semi-supervised learning literature survey. Technical report, Computer Sciences, University of Wisconsin-Madison, 2008.
-
(2008)
Semi-supervised Learning Literature Survey
-
-
Zhu, X.1
|