-
1
-
-
0013467971
-
Convergence of random products of contractions in Hilbert space
-
Amemiya I., Ando T. Convergence of random products of contractions in Hilbert space. Acta Sci. Math. (Szeged) 1965, 26:239-244.
-
(1965)
Acta Sci. Math. (Szeged)
, vol.26
, pp. 239-244
-
-
Amemiya, I.1
Ando, T.2
-
2
-
-
79955018270
-
On the random product of orthogonal projections in Hilbert space
-
World Scientific, River Edge, NJ
-
Baillon J.-B., Bruck R.E. On the random product of orthogonal projections in Hilbert space. Nonlinear Analysis and Convex Analysis 1999, 126-133. World Scientific, River Edge, NJ.
-
(1999)
Nonlinear Analysis and Convex Analysis
, pp. 126-133
-
-
Baillon, J.-B.1
Bruck, R.E.2
-
3
-
-
0000746478
-
A norm convergence result on random products of relaxed projections in Hilbert space
-
Bauschke H.H. A norm convergence result on random products of relaxed projections in Hilbert space. Trans. Amer. Math. Soc. 1995, 347:1365-1373.
-
(1995)
Trans. Amer. Math. Soc.
, vol.347
, pp. 1365-1373
-
-
Bauschke, H.H.1
-
4
-
-
0001448913
-
On the convergence of von Neumann's alternating projection algorithm for two sets
-
Bauschke H.H., Borwein J.M. On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Anal. 1993, 1:185-212.
-
(1993)
Set-Valued Anal.
, vol.1
, pp. 185-212
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
5
-
-
0037976260
-
Dykstra's alternating projection algorithm for two sets
-
Bauschke H.H., Borwein J.M. Dykstra's alternating projection algorithm for two sets. J. Approx. Theory 1994, 79:418-443.
-
(1994)
J. Approx. Theory
, vol.79
, pp. 418-443
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
6
-
-
0002351732
-
The method of cyclic projections for closed convex sets in Hilbert space
-
Bauschke H.H., Borwein J.M., Lewis A.S. The method of cyclic projections for closed convex sets in Hilbert space. Contemp. Math. 1997, 204:1-38.
-
(1997)
Contemp. Math.
, vol.204
, pp. 1-38
-
-
Bauschke, H.H.1
Borwein, J.M.2
Lewis, A.S.3
-
8
-
-
2942687455
-
Finding best approximation pairs relative to two closed convex sets in Hilbert spaces
-
Bauschke H.H., Combettes P.L., Luke D.R. Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 2004, 127:178-192.
-
(2004)
J. Approx. Theory
, vol.127
, pp. 178-192
-
-
Bauschke, H.H.1
Combettes, P.L.2
Luke, D.R.3
-
9
-
-
79955024543
-
On the random product of orthogonal projections in Hilbert space II
-
Bruck R.E. On the random product of orthogonal projections in Hilbert space II. Contemp. Math. 2010, 513:65-98.
-
(2010)
Contemp. Math.
, vol.513
, pp. 65-98
-
-
Bruck, R.E.1
-
11
-
-
0028543165
-
Inconsistent signal feasibility problems: Least-squares solutions in a product space
-
Combettes P.L. Inconsistent signal feasibility problems: Least-squares solutions in a product space. IEEE Trans. Signal Process. 1994, 42:2955-2966.
-
(1994)
IEEE Trans. Signal Process.
, vol.42
, pp. 2955-2966
-
-
Combettes, P.L.1
-
12
-
-
13244295576
-
Solving monotone inclusions via compositions of nonexpansive averaged operators
-
Combettes P.L. Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 2004, 53:475-504.
-
(2004)
Optimization
, vol.53
, pp. 475-504
-
-
Combettes, P.L.1
-
13
-
-
0001770096
-
The method of alternating orthogonal projections
-
Kluwer, The Netherlands, S.P. Singh (Ed.)
-
Deutsch F. The method of alternating orthogonal projections. Approximation Theory, Spline Functions and Applications 1992, 105-121. Kluwer, The Netherlands. S.P. Singh (Ed.).
-
(1992)
Approximation Theory, Spline Functions and Applications
, pp. 105-121
-
-
Deutsch, F.1
-
14
-
-
0000876601
-
Random products of nonexpansive mappings
-
Longman, Harlow, UK
-
Dye J., Reich S. Random products of nonexpansive mappings. Optimization and Nonlinear Analysis 1992, 106-118. Longman, Harlow, UK.
-
(1992)
Optimization and Nonlinear Analysis
, pp. 106-118
-
-
Dye, J.1
Reich, S.2
-
15
-
-
80955143136
-
Closed Fejer cycles for inconsistent systems of convex inequalities
-
Eremin I.I., Popov L.D. Closed Fejer cycles for inconsistent systems of convex inequalities. Russian Math. (Iz. VUZ) 2008, 52:8-16.
-
(2008)
Russian Math. (Iz. VUZ)
, vol.52
, pp. 8-16
-
-
Eremin, I.I.1
Popov, L.D.2
-
17
-
-
33845708830
-
The method of projections for finding the common point of convex sets
-
Gubin L.G., Polyak B.T., Raik E.V. The method of projections for finding the common point of convex sets. Comput. Math. Math. Phys. 1967, 7:1-24.
-
(1967)
Comput. Math. Math. Phys.
, vol.7
, pp. 1-24
-
-
Gubin, L.G.1
Polyak, B.T.2
Raik, E.V.3
-
18
-
-
0002477272
-
The product of projection operators
-
Halperin I. The product of projection operators. Acta Sci. Math. (Szeged) 1962, 23:96-99.
-
(1962)
Acta Sci. Math. (Szeged)
, vol.23
, pp. 96-99
-
-
Halperin, I.1
-
19
-
-
2042504393
-
An alternating projection that does not converge in norm
-
Hundal H.S. An alternating projection that does not converge in norm. Nonlinear Anal. 2004, 57:35-61.
-
(2004)
Nonlinear Anal.
, vol.57
, pp. 35-61
-
-
Hundal, H.S.1
-
20
-
-
33646672554
-
A note on the von Neumann alternating projections algorithm
-
Kopecká E., Reich S. A note on the von Neumann alternating projections algorithm. J. Nonlinear Convex Anal. 2004, 5:379-386.
-
(2004)
J. Nonlinear Convex Anal.
, vol.5
, pp. 379-386
-
-
Kopecká, E.1
Reich, S.2
-
21
-
-
80955144565
-
Über die sukzessive Wahl des kürzesten Weges
-
Springer-Verlag, Berlin, O. Opitz, B. Rauhut (Eds.)
-
Kosmol P. Über die sukzessive Wahl des kürzesten Weges. Ökonomie und Mathematik 1987, 35-42. Springer-Verlag, Berlin. O. Opitz, B. Rauhut (Eds.).
-
(1987)
Ökonomie und Mathematik
, pp. 35-42
-
-
Kosmol, P.1
-
24
-
-
0001363448
-
On rings of operators. Reduction theory
-
(the result in question was used by the author in his 1935 Princeton Lecture Notes; see also Theorem 13.7 in: J. von Neumann, Functional Operators II - The Geometry of Orthogonal Spaces, Ann. of Math. Stud., vol. 22, Princeton University Press, Princeton, NJ, 1950)
-
von Neumann J. On rings of operators. Reduction theory. Ann. of Math. 1949, 50:401-485. (the result in question was used by the author in his 1935 Princeton Lecture Notes; see also Theorem 13.7 in: J. von Neumann, Functional Operators II - The Geometry of Orthogonal Spaces, Ann. of Math. Stud., vol. 22, Princeton University Press, Princeton, NJ, 1950).
-
(1949)
Ann. of Math.
, vol.50
, pp. 401-485
-
-
von Neumann, J.1
|