메뉴 건너뛰기




Volumn , Issue PART 2, 2013, Pages 1613-1621

Infinite positive semidefinite tensor factorization for source separation of mixture signals

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; FACTORIZATION; INFERENCE ENGINES; LEARNING ALGORITHMS; LEARNING SYSTEMS; TENSORS;

EID: 84897542726     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (27)

References (30)
  • 2
    • 0033349607 scopus 로고    scopus 로고
    • Variational principal components
    • Bishop, C. M. Variational principal components. In ICANN, pp. 509-514, 1999.
    • (1999) ICANN , pp. 509-514
    • Bishop, C.M.1
  • 3
    • 0012153407 scopus 로고    scopus 로고
    • Classifying single trial EEG: Towards brain computer interfacing
    • Blankertz, B., Curio, G., and Müller, K.-L. Classifying single trial EEG: Towards brain computer interfacing, In: NIPS, 2001. www.bbci.de/ competition/ii/berlin-desc.html
    • (2001) NIPS
    • Blankertz, B.1    Curio, G.2    Müller, K.-L.3
  • 4
    • 49949144765 scopus 로고
    • The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming
    • Bregman, L. M. The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR CMMP, 7(3):200-217, 1967.
    • (1967) USSR CMMP , vol.7 , Issue.3 , pp. 200-217
    • Bregman, L.M.1
  • 5
    • 0032360547 scopus 로고    scopus 로고
    • Generalized inverse Gaussian distributions and their Wishart connections
    • Butler, R. W. Generalized inverse Gaussian distributions and their Wishart connections. Scandinavian Journal of Statistics, 25(1):69-75, 1998. (Pubitemid 128651013)
    • (1998) Scandinavian Journal of Statistics , vol.25 , Issue.1 , pp. 69-75
    • Butler, R.W.1
  • 6
    • 0038546583 scopus 로고    scopus 로고
    • Laplace approximation for Bessel functions of matrix argument
    • DOI 10.1016/S0377-0427(02)00874-9
    • Butler, R. W. and Wood, A. Laplace approximation for Bessel functions of matrix argument. J. of Computational and Applied Math., 155(2):359-382, 2003. (Pubitemid 36678868)
    • (2003) Journal of Computational and Applied Mathematics , vol.155 , Issue.2 , pp. 359-382
    • Butler, R.W.1    Wood, A.T.A.2
  • 7
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an N-way generalization of 'Eckart-Young' decomposition
    • Carroll, J. D. and Chang, J. J. Analysis of individual differences in multidimensional scaling via an N-way generalization of 'Eckart-Young' decomposition. Psychometrika, 35(3):283-319, 1970.
    • (1970) Psychometrika , vol.35 , Issue.3 , pp. 283-319
    • Carroll, J.D.1    Chang, J.J.2
  • 8
    • 67650927380 scopus 로고    scopus 로고
    • Bayesian inference for nonnegative matrix factorisation models
    • Cemgil, A. T. Bayesian inference for nonnegative matrix factorisation models. Computational Intelligence and Neuroscience, Article ID 785152, 2009.
    • (2009) Computational Intelligence and Neuroscience , pp. 785152
    • Cemgil, A.T.1
  • 9
    • 63249085556 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis
    • Févotte, C., Bertin, N., and Durrieu, J.-L. Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis. Neural Computation, 21(3):793-830, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 793-830
    • Févotte, C.1    Bertin, N.2    Durrieu, J.-L.3
  • 10
    • 0141623871 scopus 로고    scopus 로고
    • RWC music database: Popular, classical, and jazz music database
    • Goto, M., Hashiguchi, H., Nishimura, T., and Oka, R. RWC music database: Popular, classical, and jazz music database. In ISMIR, pp. 287-288, 2002.
    • (2002) ISMIR , pp. 287-288
    • Goto, M.1    Hashiguchi, H.2    Nishimura, T.3    Oka, R.4
  • 11
    • 0002740437 scopus 로고
    • Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis
    • Harshman, R. A. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis. UCLA Working Papers in Phonetics, 16(1), 1970.
    • (1970) UCLA Working Papers in Phonetics , vol.16 , Issue.1
    • Harshman, R.A.1
  • 12
    • 0000202526 scopus 로고
    • Bessel functions of matrix argument
    • Herz, C. S. Bessel functions of matrix argument. Annals of Mathematics, 61(3):474-523, 1955.
    • (1955) Annals of Mathematics , vol.61 , Issue.3 , pp. 474-523
    • Herz, C.S.1
  • 13
    • 77956538800 scopus 로고    scopus 로고
    • Bayesian non-parametric matrix factorization for recorded music
    • Hoffman, M., Blei, D., and Cook, P. Bayesian non-parametric matrix factorization for recorded music. In ICML, pp. 439-446, 2010.
    • (2010) ICML , pp. 439-446
    • Hoffman, M.1    Blei, D.2    Cook, P.3
  • 14
    • 0014698310 scopus 로고
    • Analysis synthesis telephony based on the maximum likelihood method
    • Itakura, F. and Saito, S. Analysis synthesis telephony based on the maximum likelihood method. In ICA, pp. C17-C20, 1968.
    • (1968) ICA
    • Itakura, F.1    Saito, S.2
  • 15
    • 61749094150 scopus 로고    scopus 로고
    • Low-rank kernel learning with Bregman matrix divergences
    • Kulis, B., Sustik, M., and Dhillon, I. Low-rank kernel learning with Bregman matrix divergences. JMLR, 10:341-376, 2009.
    • (2009) JMLR , vol.10 , pp. 341-376
    • Kulis, B.1    Sustik, M.2    Dhillon, I.3
  • 16
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback, S. and Leibler, R. On information and sufficiency. Annals of Math. Stat., 22(1):79-86, 1951.
    • (1951) Annals of Math. Stat. , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.2
  • 18
    • 34948844580 scopus 로고    scopus 로고
    • Gaussian process latent variable models for visualisation of high dimensional data
    • Lawrence, N. D. Gaussian process latent variable models for visualisation of high dimensional data. In NIPS, 2003.
    • (2003) NIPS
    • Lawrence, N.D.1
  • 19
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Lee, D. and Seung, H. Algorithms for non-negative matrix factorization. In NIPS, pp. 556-562, 2000.
    • (2000) NIPS , pp. 556-562
    • Lee, D.1    Seung, H.2
  • 20
    • 33749865214 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for motor imagery EEG classification
    • Lee, H., Cichocki, A., and Choi, S. Nonnegative matrix factorization for motor imagery EEG classification. In ICANN, pp. 250-259, 2006.
    • (2006) ICANN , pp. 250-259
    • Lee, H.1    Cichocki, A.2    Choi, S.3
  • 21
    • 79959219150 scopus 로고    scopus 로고
    • Gaussian processes for underdetermined source separation
    • Liutkus, A., Badeau, R., and Richard, G. Gaussian processes for underdetermined source separation. IEEE Trans. on ASLP, 59(7):3155-3167, 2011.
    • (2011) IEEE Trans. On ASLP , vol.59 , Issue.7 , pp. 3155-3167
    • Liutkus, A.1    Badeau, R.2    Richard, G.3
  • 22
    • 78449276257 scopus 로고    scopus 로고
    • Convergence-guaranteed multiplicative algorithms for non-negative matrix factorization with beta divergence
    • Nakano, M., Kameoka, H., Roux, J. Le, Kitano, Y., Ono, N., and Sagayama, S. Convergence-guaranteed multiplicative algorithms for non-negative matrix factorization with beta divergence. In MLSP, pp. 283-288, 2010.
    • (2010) MLSP , pp. 283-288
    • Nakano, M.1    Kameoka, H.2    Le Roux, J.3    Kitano, Y.4    Ono, N.5    Sagayama, S.6
  • 23
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
    • Salakhutdinov, R. and Mnih, A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In ICML, pp. 880-887, 2008.
    • (2008) ICML , pp. 880-887
    • Salakhutdinov, R.1    Mnih, A.2
  • 24
    • 84867589628 scopus 로고    scopus 로고
    • Efficient algorithms for multichannel extensions of Itakura-Saito nonnegative matrix factorization
    • Sawada, H., Kameoka, H., Araki, S., and Ueda, N. Efficient algorithms for multichannel extensions of Itakura-Saito nonnegative matrix factorization. In ICASSP, pp. 261-264, 2012.
    • (2012) ICASSP , pp. 261-264
    • Sawada, H.1    Kameoka, H.2    Araki, S.3    Ueda, N.4
  • 25
    • 31844432834 scopus 로고    scopus 로고
    • Non-negative tensor factorization with applications to statistics and computer vision
    • Shashua, A. and Hazan, T. Non-negative tensor factorization with applications to statistics and computer vision. In ICML, pp. 792-799, 2005.
    • (2005) ICML , pp. 792-799
    • Shashua, A.1    Hazan, T.2
  • 27
    • 84945116938 scopus 로고    scopus 로고
    • Non-negative matrix factorization for polyphonic music transcription
    • Smaragdis, P. and Brown, J. C. Non-negative matrix factorization for polyphonic music transcription. In WASPAA, pp. 177-180, 2003.
    • (2003) WASPAA , pp. 177-180
    • Smaragdis, P.1    Brown, J.C.2
  • 28
    • 21844471282 scopus 로고    scopus 로고
    • Matrix exponentiated gradient updates for on-line learning and Bregman projection
    • Tsuda, K., Rätsch, G., and Warmuth, M. K. Matrix exponentiated gradient updates for on-line learning and Bregman projection. JMLR, 6:995-1018, 2005.
    • (2005) JMLR , vol.6 , pp. 995-1018
    • Tsuda, K.1    Rätsch, G.2    Warmuth, M.K.3
  • 29
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • Tucker, L. R. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279-311, 1966.
    • (1966) Psychometrika , vol.31 , Issue.3 , pp. 279-311
    • Tucker, L.R.1
  • 30
    • 84867120756 scopus 로고    scopus 로고
    • Infinite Tucker decomposition: Nonparametric Bayesian models for multiway data analysis
    • Xu, Z., Yan, F., and Qi, Y. Infinite Tucker decomposition: Nonparametric Bayesian models for multiway data analysis. In ICML, pp. 1023-1030, 2012. Technology
    • (2012) ICML , pp. 1023-1030
    • Xu, Z.1    Yan, F.2    Qi, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.