-
1
-
-
84897531556
-
An integer optimization approach to associative classification
-
Bertsimas, D., Chang, A., and Rudin, C. An integer optimization approach to associative classification. In Adv. Neur. Inf. Process. Syst. 25, pp. 269-277. 2012.
-
(2012)
Adv. Neur. Inf. Process. Syst.
, vol.25
, pp. 269-277
-
-
Bertsimas, D.1
Chang, A.2
Rudin, C.3
-
2
-
-
85032750937
-
An introduction to compressive sampling
-
Mar.
-
Candès, E. J. and Wakin, M. B. An introduction to compressive sampling. IEEE Signal Process. Mag., 25(2):21-30, Mar. 2008.
-
(2008)
IEEE Signal Process. Mag.
, vol.25
, Issue.2
, pp. 21-30
-
-
Candès, E.J.1
Wakin, M.B.2
-
3
-
-
34249966007
-
The CN2 induction algorithm
-
Mar.
-
Clark, P. and Niblett, T. The CN2 induction algorithm. Mach. Learn., 3(4):261-283, Mar. 1989.
-
(1989)
Mach. Learn.
, vol.3
, Issue.4
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
4
-
-
85149612939
-
Fast effective rule induction
-
Tahoe City, CA, Jul.
-
Cohen, W. W. Fast effective rule induction. In Proc. Int. Conf. Mach. Learn., pp. 115-123, Tahoe City, CA, Jul. 1995.
-
(1995)
Proc. Int. Conf. Mach. Learn.
, pp. 115-123
-
-
Cohen, W.W.1
-
5
-
-
0032596610
-
A simple, fast, and effective rule learner
-
Orlando, FL, Jul.
-
Cohen, W. W. and Singer, Y. A simple, fast, and effective rule learner. In Proc. Nat. Conf. Artif. Intell., pp. 335-342, Orlando, FL, Jul. 1999.
-
(1999)
Proc. Nat. Conf. Artif. Intell.
, pp. 335-342
-
-
Cohen, W.W.1
Singer, Y.2
-
7
-
-
77953808445
-
ENDER: A statistical framework for boosting decision rules
-
Jul.
-
Dembczyński, K., Kotłowski, W., and Słowiń ski, R. ENDER: A statistical framework for boosting decision rules. Data Min. Knowl. Disc., 21(1):52-90, Jul. 2010.
-
(2010)
Data Min. Knowl. Disc.
, vol.21
, Issue.1
, pp. 52-90
-
-
Dembczyński, K.1
Kotłowski, W.2
Słowiński, R.3
-
8
-
-
0036161257
-
Linear programming boosting via column generation
-
DOI 10.1023/A:1012470815092
-
Demiriz, A., Bennett, K. P., and Shawe-Taylor, J. Linear programming boosting via column generation. Mach. Learn., 46(1-3):225-254, Jan. 2002. (Pubitemid 34129970)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 225-254
-
-
Demiriz, A.1
Bennett, K.P.2
Shawe-Taylor, J.3
-
10
-
-
0020890649
-
A survey of super-imposed code theory
-
Dyachkov, A. G. and Rykov, V. V. A survey of super-imposed code theory. Probl. Control Inform., 12(4):229-242, 1983.
-
(1983)
Probl. Control Inform.
, vol.12
, Issue.4
, pp. 229-242
-
-
Dyachkov, A.G.1
Rykov, V.V.2
-
12
-
-
67649273234
-
Predictive learning via rule ensembles
-
Sep.
-
Friedman, J. H. and Popescu, B. E. Predictive learning via rule ensembles. Ann. Appl. Stat., 2(3):916-954, Sep. 2008.
-
(2008)
Ann. Appl. Stat.
, vol.2
, Issue.3
, pp. 916-954
-
-
Friedman, J.H.1
Popescu, B.E.2
-
13
-
-
84886524077
-
Closing the gap between analytics and action
-
Nov./Dec.
-
Fry, C. Closing the gap between analytics and action. INFORMS Analytics Mag., 4(6):4-5, Nov./Dec. 2011.
-
(2011)
INFORMS Analytics Mag.
, vol.4
, Issue.6
, pp. 4-5
-
-
Fry, C.1
-
14
-
-
0033075882
-
Separate-and-conquer rule learning
-
Feb.
-
Fürnkranz, J. Separate-and-conquer rule learning. Artif. Intell. Rev., 13(1):3-54, Feb. 1999.
-
(1999)
Artif. Intell. Rev.
, vol.13
, Issue.1
, pp. 3-54
-
-
Fürnkranz, J.1
-
15
-
-
70349696280
-
Group testing and sparse signal recovery
-
Pacific Grove, CA, Oct.
-
Gilbert, A. C., Iwen, M. A., and Strauss, M. J. Group testing and sparse signal recovery. In Asilomar Conf. Signals Syst. Comp. Conf. Record, pp. 1059-1063, Pacific Grove, CA, Oct. 2008.
-
(2008)
Asilomar Conf. Signals Syst. Comp. Conf. Record
, pp. 1059-1063
-
-
Gilbert, A.C.1
Iwen, M.A.2
Strauss, M.J.3
-
16
-
-
84872310013
-
How president Obama's campaign used big data to rally individual voters
-
Jan./Feb.
-
Issenberg, S. How president Obama's campaign used big data to rally individual voters. MIT Tech. Rev., 116(1):389, Jan./Feb. 2013.
-
(2013)
MIT Tech. Rev.
, vol.116
, Issue.1
, pp. 389
-
-
Issenberg, S.1
-
17
-
-
80053456122
-
Efficient rule ensemble learning using hierarchical kernels
-
Bellevue, WA, Jun.-Jul.
-
Jawanpuria, P., Nath, J. S., and Ramakrishnan, G. Efficient rule ensemble learning using hierarchical kernels. In Proc. Int. Conf. Mach. Learn., pp. 161-168, Bellevue, WA, Jun.-Jul. 2011.
-
(2011)
Proc. Int. Conf. Mach. Learn.
, pp. 161-168
-
-
Jawanpuria, P.1
Nath, J.S.2
Ramakrishnan, G.3
-
19
-
-
84897528157
-
-
Technical Report 609, Dept. Stat., Univ. Washington, Dec.
-
Letham, B., Rudin, C., McCormick, T. H., and Madigan, D. Building interpretable classifiers with rules using Bayesian analysis. Technical Report 609, Dept. Stat., Univ. Washington, Dec. 2012.
-
(2012)
Building Interpretable Classifiers with Rules Using Bayesian Analysis
-
-
Letham, B.1
Rudin, C.2
McCormick, T.H.3
Madigan, D.4
-
20
-
-
25644458596
-
Finding cancer biomarkers from mass spectrometry data by decision lists
-
DOI 10.1089/cmb.2005.12.971
-
Liu, J. and Li, M. Finding cancer biomarkers from mass spectrometry data by decision lists. J. Comp. Bio., 12(7):971-979, Sep. 2005. (Pubitemid 41384392)
-
(2005)
Journal of Computational Biology
, vol.12
, Issue.7
, pp. 971-979
-
-
Liu, J.1
Li, M.2
-
21
-
-
84867586309
-
Boolean compressed sensing: LP relaxation for group testing
-
Kyoto, Japan, Mar.
-
Malioutov, D. and Malyutov, M. Boolean compressed sensing: LP relaxation for group testing. In Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp. 3305-3308, Kyoto, Japan, Mar. 2012.
-
(2012)
Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
, pp. 3305-3308
-
-
Malioutov, D.1
Malyutov, M.2
-
22
-
-
34250280136
-
The separating property of random matrices
-
Malyutov, M. The separating property of random matrices. Math. Notes, 23(1):84-91, 1978.
-
(1978)
Math. Notes
, vol.23
, Issue.1
, pp. 84-91
-
-
Malyutov, M.1
-
24
-
-
84871534786
-
On almost disjunct matrices for group testing
-
Taipei, Taiwan, Dec.
-
Mazumdar, A. On almost disjunct matrices for group testing. In Proc. Int. Symp. Alg. Comput., pp. 649-658, Taipei, Taiwan, Dec. 2012.
-
(2012)
Proc. Int. Symp. Alg. Comput.
, pp. 649-658
-
-
Mazumdar, A.1
-
25
-
-
0029291966
-
Sparse approximate solutions to linear systems
-
Natarajan, B. K. Sparse approximate solutions to linear systems. SIAM J. Comput., 24(2):227-234, 1995.
-
(1995)
SIAM J. Comput.
, vol.24
, Issue.2
, pp. 227-234
-
-
Natarajan, B.K.1
-
27
-
-
1442267080
-
Learning decision lists
-
Nov.
-
Rivest, R. L. Learning decision lists. Mach. Learn., 2(3):229-246, Nov. 1987.
-
(1987)
Mach. Learn.
, vol.2
, Issue.3
, pp. 229-246
-
-
Rivest, R.L.1
-
28
-
-
37849053727
-
Margin-based first-order rule learning
-
Mar.
-
Rückert, U. and Kramer, S. Margin-based first-order rule learning. Mach. Learn., 70(2-3): 189-206, Mar. 2008.
-
(2008)
Mach. Learn.
, vol.70
, Issue.2-3
, pp. 189-206
-
-
Rückert, U.1
Kramer, S.2
-
29
-
-
0002202594
-
Learning disjunctions of conjunctions
-
Los Angeles, CA, Aug.
-
Valiant, L. G. Learning disjunctions of conjunctions. In Proc. Int. Joint Conf. Artif. Intell., pp. 560-566, Los Angeles, CA, Aug. 1985.
-
(1985)
Proc. Int. Joint Conf. Artif. Intell.
, pp. 560-566
-
-
Valiant, L.G.1
-
30
-
-
84886462509
-
Interactive visual salesforce analytics
-
Varshney, K. R., Rasmussen, J. C., Mojsilović, A., Singh, M., and DiMicco, J. M. Interactive visual salesforce analytics. In Proc. Int. Conf. Inf. Syst., Orlando, FL, Dec. 2012.
-
Proc. Int. Conf. Inf. Syst., Orlando, FL, Dec. 2012
-
-
Varshney, K.R.1
Rasmussen, J.C.2
Mojsilović, A.3
Singh, M.4
DiMicco, J.M.5
|