메뉴 건너뛰기




Volumn , Issue PART 3, 2013, Pages 1988-1996

Fast dual variational inference for non-conjugate latent gaussian models

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; CONVEX OPTIMIZATION; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); INFERENCE ENGINES; LEARNING SYSTEMS; MARKOV PROCESSES;

EID: 84897522166     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (17)

References (24)
  • 2
    • 77952563025 scopus 로고    scopus 로고
    • Variational inference for large-scale models of discrete choice
    • Braun, M. and McAuliffe, J. Variational inference for large-scale models of discrete choice. Journal of the American Statistical Association, 105(489):324-335, 2010.
    • (2010) Journal of the American Statistical Association , vol.105 , Issue.489 , pp. 324-335
    • Braun, M.1    McAuliffe, J.2
  • 3
  • 4
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian multinomial probit regression with gaussian process priors
    • DOI 10.1162/neco.2006.18.8.1790
    • Girolami, M. and Rogers, S. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Comptuation, 18(8):1790-1817, 2006. (Pubitemid 44036395)
    • (2006) Neural Computation , vol.18 , Issue.8 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 13
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • Minka, T. Expectation propagation for approximate Bayesian inference. In Uncertainty in Artificial Intelligence 17, 2001.
    • (2001) Uncertainty in Artificial Intelligence , vol.17
    • Minka, T.1
  • 15
    • 63249135864 scopus 로고    scopus 로고
    • The variational Gaussian approximation revisited
    • Opper, M. and Archambeau, C. The variational Gaussian approximation revisited. Neural computation, 21(3):786-792, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 18
    • 77952603871 scopus 로고    scopus 로고
    • Gaussian Markov Random Fields: Theory and Applications
    • Chapman & Hall, London
    • Rue, H. and Held, L. Gaussian Markov Random Fields: Theory and Applications, volume 104 of Monographs on Statistics and Applied Probability. Chapman & Hall, London, 2005.
    • (2005) Monographs on Statistics and Applied Probability , vol.104
    • Rue, H.1    Held, L.2
  • 19
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations
    • Rue, H., Martino, S., and Chopin, N. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations. Journal of Royal Statistical Sociecty, Series B, 71:319-392, 2009.
    • (2009) Journal of Royal Statistical Sociecty, Series B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 20
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • Seeger, M. Bayesian inference and optimal design for the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 759-813
    • Seeger, M.1
  • 21
    • 74349098311 scopus 로고    scopus 로고
    • Sparse linear models: Variational approximate inference and Bayesian experimental design
    • 012001
    • Seeger, M. Sparse linear models: Variational approximate inference and Bayesian experimental design. Journal of Physics: Conference Series, 197(012001), 2009.
    • (2009) Journal of Physics: Conference Series , vol.197
    • Seeger, M.1
  • 22
    • 84856673666 scopus 로고    scopus 로고
    • Large scale Bayesian inference and experimental design for sparse linear models
    • Seeger, M. and Nickisch, H. Large scale Bayesian inference and experimental design for sparse linear models. SIAM J. Imag. Sciences, 4(1):166-199, 2011.
    • (2011) SIAM J. Imag. Sciences , vol.4 , Issue.1 , pp. 166-199
    • Seeger, M.1    Nickisch, H.2
  • 24
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • Tipping, M. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.