-
2
-
-
77952563025
-
Variational inference for large-scale models of discrete choice
-
Braun, M. and McAuliffe, J. Variational inference for large-scale models of discrete choice. Journal of the American Statistical Association, 105(489):324-335, 2010.
-
(2010)
Journal of the American Statistical Association
, vol.105
, Issue.489
, pp. 324-335
-
-
Braun, M.1
McAuliffe, J.2
-
4
-
-
33745841370
-
Variational Bayesian multinomial probit regression with gaussian process priors
-
DOI 10.1162/neco.2006.18.8.1790
-
Girolami, M. and Rogers, S. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Comptuation, 18(8):1790-1817, 2006. (Pubitemid 44036395)
-
(2006)
Neural Computation
, vol.18
, Issue.8
, pp. 1790-1817
-
-
Girolami, M.1
Rogers, S.2
-
5
-
-
79551487646
-
Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes
-
Honkela, A., Raiko, T., Kuusela, M., Tornio, M., and Karhunen, J. Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes. Journal of Machine Learning Research, 11:-3235-3268, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.11
, pp. 3235-3268
-
-
Honkela, A.1
Raiko, T.2
Kuusela, M.3
Tornio, M.4
Karhunen, J.5
-
6
-
-
77956557111
-
Accelerated dual decomposition for map inference
-
Jojic, Vladimir, Gould, Stephen, and Roller, Daphne. Accelerated dual decomposition for map inference. In International Conference on Machine Learning, 2010.
-
International Conference on Machine Learning, 2010
-
-
Jojic, V.1
Gould, S.2
Roller, D.3
-
8
-
-
84959282009
-
A stick breaking likelihood for categorical data analysis with latent Gaussian models
-
Khan, Mohammad Emtiyaz, Mohamed, Shakir, Marlin, Benjamin, and Murphy, Kevin. A stick breaking likelihood for categorical data analysis with latent Gaussian models. In International conference on Artificial Intelligence and Statistics, 2012a.
-
International Conference on Artificial Intelligence and Statistics, 2012a
-
-
Khan, M.E.1
Mohamed, S.2
Marlin, B.3
Murphy, K.4
-
12
-
-
80053441013
-
Piecewise bounds for estimating Bernoulli-logistic latent Gaussian models
-
Marlin, B., Khan, M., and Murphy, K. Piecewise bounds for estimating Bernoulli-logistic latent Gaussian models. In International Conference on Machine Learning, 2011.
-
International Conference on Machine Learning, 2011
-
-
Marlin, B.1
Khan, M.2
Murphy, K.3
-
13
-
-
0345978970
-
Expectation propagation for approximate Bayesian inference
-
Minka, T. Expectation propagation for approximate Bayesian inference. In Uncertainty in Artificial Intelligence 17, 2001.
-
(2001)
Uncertainty in Artificial Intelligence
, vol.17
-
-
Minka, T.1
-
15
-
-
63249135864
-
The variational Gaussian approximation revisited
-
Opper, M. and Archambeau, C. The variational Gaussian approximation revisited. Neural computation, 21(3):786-792, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.3
, pp. 786-792
-
-
Opper, M.1
Archambeau, C.2
-
18
-
-
77952603871
-
Gaussian Markov Random Fields: Theory and Applications
-
Chapman & Hall, London
-
Rue, H. and Held, L. Gaussian Markov Random Fields: Theory and Applications, volume 104 of Monographs on Statistics and Applied Probability. Chapman & Hall, London, 2005.
-
(2005)
Monographs on Statistics and Applied Probability
, vol.104
-
-
Rue, H.1
Held, L.2
-
19
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations
-
Rue, H., Martino, S., and Chopin, N. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations. Journal of Royal Statistical Sociecty, Series B, 71:319-392, 2009.
-
(2009)
Journal of Royal Statistical Sociecty, Series B
, vol.71
, pp. 319-392
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
20
-
-
44649181578
-
Bayesian inference and optimal design for the sparse linear model
-
Seeger, M. Bayesian inference and optimal design for the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 759-813
-
-
Seeger, M.1
-
21
-
-
74349098311
-
Sparse linear models: Variational approximate inference and Bayesian experimental design
-
012001
-
Seeger, M. Sparse linear models: Variational approximate inference and Bayesian experimental design. Journal of Physics: Conference Series, 197(012001), 2009.
-
(2009)
Journal of Physics: Conference Series
, vol.197
-
-
Seeger, M.1
-
22
-
-
84856673666
-
Large scale Bayesian inference and experimental design for sparse linear models
-
Seeger, M. and Nickisch, H. Large scale Bayesian inference and experimental design for sparse linear models. SIAM J. Imag. Sciences, 4(1):166-199, 2011.
-
(2011)
SIAM J. Imag. Sciences
, vol.4
, Issue.1
, pp. 166-199
-
-
Seeger, M.1
Nickisch, H.2
-
23
-
-
79957829592
-
Introduction to dual decomposition for inference
-
Sontag, David, Globerson, Amir, and Jaakkola, Tommi. Introduction to dual decomposition for inference. Optimization for Machine Learning, 1, 2011.
-
(2011)
Optimization for Machine Learning
, vol.1
-
-
Sontag, D.1
Globerson, A.2
Jaakkola, T.3
-
24
-
-
0001224048
-
Sparse Bayesian Learning and the Relevance Vector Machine
-
DOI 10.1162/15324430152748236
-
Tipping, M. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001. (Pubitemid 33687203)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
|