메뉴 건너뛰기




Volumn 69, Issue 6, 2014, Pages 1326-1333

Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data

Author keywords

Artificial neural networks; Combined sewer overflows; Cross correlation; Depth monitoring; Prediction; Rainfall radar

Indexed keywords

CATCHMENTS; FORECASTING; HYDRAULIC MODELS; NEURAL NETWORKS; RADAR; RAIN;

EID: 84897511520     PISSN: 02731223     EISSN: None     Source Type: Journal    
DOI: 10.2166/wst.2014.024     Document Type: Article
Times cited : (48)

References (23)
  • 2
    • 78049353695 scopus 로고    scopus 로고
    • Automatic, semi-automatic and manual validation of urban drainage data
    • Branisavljević, N., Prodanović, D. & Pavlović, D. 2010 Automatic, semi-automatic and manual validation of urban drainage data. Water Science and Technology 62 (5), 1013-1021.
    • (2010) Water Science and Technology , vol.62 , Issue.5 , pp. 1013-1021
    • Branisavljević, N.1    Prodanović, D.2    Pavlović, D.3
  • 3
    • 6044278211 scopus 로고    scopus 로고
    • Towards a roadmap for use of radar rainfall data in urban drainage
    • DOI 10.1016/j.jhydrol.2004.08.004, PII S0022169404003658, Urban Hydrology
    • Einfalt, T., Arnbjerg-Nielsen, K., Golza, C., Jensen, N., Quirmbach, M., Vaes, G. & Vieux, B. 2004 Towards a roadmap for use of radar rainfall data in urban drainage. Journal of Hydrology 299, 186-202. (Pubitemid 39379477)
    • (2004) Journal of Hydrology , vol.299 , Issue.3-4 , pp. 186-202
    • Einfalt, T.1    Arnbjerg-Nielsen, K.2    Golz, C.3    Jensen, N.-E.4    Quirmbach, M.5    Vaes, G.6    Vieux, B.7
  • 4
    • 0033512986 scopus 로고    scopus 로고
    • A comparison of artificial neural networks used for river flow forecasting
    • Dawson, C. W. & Wilby, R. L. 1999 A comparison of artificial neural networks used for river flow forecasting. Hydrology & Earth System Sciences 3 (4), 529-540. (Pubitemid 30192373)
    • (1999) Hydrology and Earth System Sciences , vol.3 , Issue.4 , pp. 529-540
    • Dawson, C.W.1    Wilby, R.L.2
  • 6
    • 68949148992 scopus 로고    scopus 로고
    • Recent advances in data-driven modeling of remote sensing applications in hydrology
    • Evora, N. D. & Coulibaly, P. 2009 Recent advances in data-driven modeling of remote sensing applications in hydrology. Journal of Hydroinformatics 11 (3-4), 194- 201.
    • (2009) Journal of Hydroinformatics , vol.11 , Issue.3-4 , pp. 194-201
    • Evora, N.D.1    Coulibaly, P.2
  • 7
  • 13
    • 84881235346 scopus 로고    scopus 로고
    • Advanced monitoring platform for industrial wastewater treatment: Multivariable approach using the self-organizing map
    • Liukkonen, M., Laakso, I. & Hiltunen, Y. 2013 Advanced monitoring platform for industrial wastewater treatment: Multivariable approach using the self-organizing map. Environmental Modelling & Software 48, 193-201.
    • (2013) Environmental Modelling & Software , vol.48 , pp. 193-201
    • Liukkonen, M.1    Laakso, I.2    Hiltunen, Y.3
  • 14
    • 84898824193 scopus 로고    scopus 로고
    • MATLAB® R 2012a (The MathWorks Inc., Massachusetts)
    • MATLAB® R 2012a (The MathWorks Inc., Massachusetts).
  • 15
    • 84898827829 scopus 로고
    • Benchmark of some learning algorithms for single layer and hopfield networks
    • Mayoraz, E. 1990 Benchmark of some learning algorithms for single layer and hopfield networks. Complex Systems 4, 477-490.
    • (1990) Complex Systems , vol.4 , pp. 477-490
    • Mayoraz, E.1
  • 16
    • 82755183879 scopus 로고    scopus 로고
    • Available from: (accessed 19/06/2013)
    • Met. Office 2009 Fact Sheet 15, Weather Radar. Available from: http://www.metoffice.gov.uk/media/pdf/o/c/fact-sheet-No.-15.pdf (accessed 19/06/2013).
    • (2009) Fact Sheet 15, Weather Radar
  • 17
    • 79959782746 scopus 로고    scopus 로고
    • An artificial intelligence approach for optimising pumping in sewer systems
    • Ostojin, S., Mounce, S. R. & Boxall, J. B. 2011 An artificial intelligence approach for optimising pumping in sewer systems. Journal of HydroInformatics 13 (3), 295-306.
    • (2011) Journal of HydroInformatics , vol.13 , Issue.3 , pp. 295-306
    • Ostojin, S.1    Mounce, S.R.2    Boxall, J.B.3
  • 19
    • 84864353561 scopus 로고    scopus 로고
    • Influence of rainfall estimation error and spatial variability on sewer flow prediction at a small urban scale
    • Schellart, A. N. A., Shepherd, W. & Saul, A. J. 2012 Influence of rainfall estimation error and spatial variability on sewer flow prediction at a small urban scale. Advances in Water Resources 45, 65-75.
    • (2012) Advances in Water Resources , vol.45 , pp. 65-75
    • Schellart, A.N.A.1    Shepherd, W.2    Saul, A.J.3
  • 23
    • 84881486323 scopus 로고    scopus 로고
    • Cluster analysis for characterization of rainfalls and CSO behaviours in an urban drainage area of Tokyo
    • Yu, Y., Kojima, K., An, K. & Furumai, H. 2013 Cluster analysis for characterization of rainfalls and CSO behaviours in an urban drainage area of Tokyo. Water Science and Technology 68 (3), 544-551.
    • (2013) Water Science and Technology , vol.68 , Issue.3 , pp. 544-551
    • Yu, Y.1    Kojima, K.2    An, K.3    Furumai, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.