메뉴 건너뛰기




Volumn 47, Issue 7, 2014, Pages 2505-2516

The MinMax k-Means clustering algorithm

Author keywords

Balanced clusters; Clustering; k Means; k Means initialization

Indexed keywords

CLUSTERING ALGORITHMS;

EID: 84897115586     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.01.015     Document Type: Article
Times cited : (240)

References (30)
  • 1
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • R. Xu, and D.C. Wunsch II Survey of clustering algorithms IEEE Trans. Neural Netw. 16 3 2005 645 678
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.C.2
  • 3
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • S.P. Lloyd Least squares quantization in PCM IEEE Trans. Inf. Theory 28 2 1982 129 136
    • (1982) IEEE Trans. Inf. Theory , vol.28 , Issue.2 , pp. 129-136
    • Lloyd, S.P.1
  • 4
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A.J. Smola, and K.-R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 5 1998 1299 1319
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 6
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the k-means algorithm
    • J.M. Peña, J.A. Lozano, and P. Larrañaga An empirical comparison of four initialization methods for the k-means algorithm Pattern Recognit. Lett. 20 10 1999 1027 1040
    • (1999) Pattern Recognit. Lett. , vol.20 , Issue.10 , pp. 1027-1040
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 7
    • 84866127615 scopus 로고    scopus 로고
    • A comparative study of efficient initialization methods for the k-means clustering algorithm
    • M.E. Celebi, H.A. Kingravi, and P.A. Vela A comparative study of efficient initialization methods for the k-means clustering algorithm Expert Syst. Appl. 40 1 2013 200 210
    • (2013) Expert Syst. Appl. , vol.40 , Issue.1 , pp. 200-210
    • Celebi, M.E.1    Kingravi, H.A.2    Vela, P.A.3
  • 10
    • 2542583128 scopus 로고    scopus 로고
    • Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres
    • A. Banerjee, and J. Ghosh Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres IEEE Trans. Neural Netw. 15 3 2004 702 719
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.3 , pp. 702-719
    • Banerjee, A.1    Ghosh, J.2
  • 12
    • 41649118940 scopus 로고    scopus 로고
    • In search of deterministic methods for initializing k-means and gaussian mixture clustering
    • T. Su, and J.G. Dy In search of deterministic methods for initializing k-means and gaussian mixture clustering Intell. Data Anal. 11 4 2007 319 338
    • (2007) Intell. Data Anal. , vol.11 , Issue.4 , pp. 319-338
    • Su, T.1    Dy, J.G.2
  • 13
  • 14
    • 45549104169 scopus 로고    scopus 로고
    • Modified global k-means for minimum sum-of-squares clustering problems
    • A.M. Bagirov Modified global k-means for minimum sum-of-squares clustering problems Pattern Recognit. 41 10 2008 3192 3199
    • (2008) Pattern Recognit. , vol.41 , Issue.10 , pp. 3192-3199
    • Bagirov, A.M.1
  • 15
    • 78650294946 scopus 로고    scopus 로고
    • Fast modified global k-means algorithm for incremental cluster construction
    • A.M. Bagirov, J. Ugon, and D. Webb Fast modified global k-means algorithm for incremental cluster construction Pattern Recognit. 44 4 2011 866 876
    • (2011) Pattern Recognit. , vol.44 , Issue.4 , pp. 866-876
    • Bagirov, A.M.1    Ugon, J.2    Webb, D.3
  • 17
    • 67949112664 scopus 로고    scopus 로고
    • The global kernel k-means algorithm for clustering in feature space
    • G. Tzortzis, and A. Likas The global kernel k-means algorithm for clustering in feature space IEEE Trans. Neural Netw. 20 7 2009 1181 1194
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.7 , pp. 1181-1194
    • Tzortzis, G.1    Likas, A.2
  • 22
    • 0042312608 scopus 로고    scopus 로고
    • Feature weighting in k-means clustering
    • D.S. Modha, and W.S. Spangler Feature weighting in k-means clustering Mach. Learn. 52 3 2003 217 237
    • (2003) Mach. Learn. , vol.52 , Issue.3 , pp. 217-237
    • Modha, D.S.1    Spangler, W.S.2
  • 28
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D.G. Lowe Distinctive image features from scale-invariant keypoints Int. J. Comput. Vis. 60 2 2004 91 110
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 30
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • B.J. Frey, and D. Dueck Clustering by passing messages between data points Science 315 2007 972 976 〈 www.psi.toronto.edu/affinitypropagation 〉
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.