메뉴 건너뛰기




Volumn 30, Issue 9, 2014, Pages 2460-2469

Redox decomposition of silver citrate complex in nanoscale confinement: An unusual mechanism of formation and growth of silver nanoparticles

Author keywords

[No Author keywords available]

Indexed keywords

BIMODAL DISTRIBUTION; CHEMICAL COMPOSITIONS; COALESCENCE OF NANOPARTICLES; MECHANISM OF FORMATION; NANO-SCALE CONFINEMENTS; PHYSICAL ARCHITECTURE; SILVER NANOPARTICLES; SMALL ANGLE X-RAY SCATTERING;

EID: 84896797167     PISSN: 07437463     EISSN: 15205827     Source Type: Journal    
DOI: 10.1021/la4048787     Document Type: Article
Times cited : (49)

References (38)
  • 1
    • 56149122507 scopus 로고    scopus 로고
    • Nanochemical Equilibrium Involving a Small Number of Molecules: A Prediction of a Distinct Confinement Effect
    • Polak, M.; Rubinovich, L. Nanochemical Equilibrium Involving a Small Number of Molecules: A Prediction of a Distinct Confinement Effect Nano Lett. 2008, 8, 3543-3547
    • (2008) Nano Lett. , vol.8 , pp. 3543-3547
    • Polak, M.1    Rubinovich, L.2
  • 2
    • 80052546762 scopus 로고    scopus 로고
    • Remarkable Nanoconfinement Effects on Chemical Equilibrium Manifested in Nucleotide Dimerization and H-D Exchange Reactions
    • Polak, M.; Rubinovich, L. Remarkable Nanoconfinement Effects on Chemical Equilibrium Manifested in Nucleotide Dimerization and H-D Exchange Reactions Phys. Chem. Chem. Phys. 2011, 13, 16728-16734
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 16728-16734
    • Polak, M.1    Rubinovich, L.2
  • 3
    • 84877257014 scopus 로고    scopus 로고
    • The Intrinsic Role of Nanoconfinement in Chemical Equilibrium: Evidence from DNA Hybridization
    • Rubinovich, L.; Polak, M. The Intrinsic Role of Nanoconfinement in Chemical Equilibrium: Evidence from DNA Hybridization Nano Lett. 2013, 13, 2247-2251
    • (2013) Nano Lett. , vol.13 , pp. 2247-2251
    • Rubinovich, L.1    Polak, M.2
  • 5
    • 15744370249 scopus 로고    scopus 로고
    • Proton Transfer in Nanoconfined Polar Solvents. 1. Free Energies and Solute Position
    • Li, S.; Thompson, W. H. Proton Transfer in Nanoconfined Polar Solvents. 1. Free Energies and Solute Position J. Phys. Chem. B 2005, 109, 4941-4946
    • (2005) J. Phys. Chem. B , vol.109 , pp. 4941-4946
    • Li, S.1    Thompson, W.H.2
  • 6
    • 0037044493 scopus 로고    scopus 로고
    • A Monte Carlo Study of Spectroscopy in Nanoconfined Solvents
    • Thompson, W. H. A Monte Carlo Study of Spectroscopy in Nanoconfined Solvents J. Chem. Phys. 2002, 117, 6618-6628
    • (2002) J. Chem. Phys. , vol.117 , pp. 6618-6628
    • Thompson, W.H.1
  • 7
    • 0006706873 scopus 로고    scopus 로고
    • A Different Approach to Nanothermodynamics
    • Hill, T. L. A Different Approach to Nanothermodynamics Nano Lett. 2001, 1, 273-275
    • (2001) Nano Lett. , vol.1 , pp. 273-275
    • Hill, T.L.1
  • 9
    • 0742321804 scopus 로고    scopus 로고
    • Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology
    • Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology Chem. Rev. 2004, 104, 293-346
    • (2004) Chem. Rev. , vol.104 , pp. 293-346
    • Daniel, M.-C.1    Astruc, D.2
  • 10
    • 77957899720 scopus 로고    scopus 로고
    • Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach
    • Jiang, X. C.; Chen, C. Y.; Chen, W. M.; Yu, A. B. Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach Langmuir 2010, 26, 4400-4408
    • (2010) Langmuir , vol.26 , pp. 4400-4408
    • Jiang, X.C.1    Chen, C.Y.2    Chen, W.M.3    Yu, A.B.4
  • 11
    • 18444386790 scopus 로고    scopus 로고
    • Mechanism of Gold Metal Ion Reduction, Nanoparticle Growth and Size Control in Aqueous Amphiphilic Block Copolymer Solutions at Ambient Conditions
    • Sakai, T.; Alexandridis, P. Mechanism of Gold Metal Ion Reduction, Nanoparticle Growth and Size Control in Aqueous Amphiphilic Block Copolymer Solutions at Ambient Conditions J. Phys. Chem. B 2005, 109, 7766-7777
    • (2005) J. Phys. Chem. B , vol.109 , pp. 7766-7777
    • Sakai, T.1    Alexandridis, P.2
  • 13
    • 0035330089 scopus 로고    scopus 로고
    • Colloid Synthesis of Monodisperse Pd Nanoparticles in Layered Silicates
    • Papp, S.; Szucs, A.; Dekany, I. Colloid Synthesis of Monodisperse Pd Nanoparticles in Layered Silicates Solid State Ionics 2001, 141-142, 169-176
    • (2001) Solid State Ionics , vol.141-142 , pp. 169-176
    • Papp, S.1    Szucs, A.2    Dekany, I.3
  • 14
    • 2442710308 scopus 로고    scopus 로고
    • Nanoparticle Synthesis in Engineered Organic Nanoscale Reactors
    • Shchukin, D. G.; Sukhorukov, G. B. Nanoparticle Synthesis in Engineered Organic Nanoscale Reactors Adv. Mater. 2004, 16, 671-682
    • (2004) Adv. Mater. , vol.16 , pp. 671-682
    • Shchukin, D.G.1    Sukhorukov, G.B.2
  • 16
    • 79751481517 scopus 로고    scopus 로고
    • Polymer-Assisted Preparation of Metal Nanoparticles with Controlled Size and Morphology
    • Jeon, S.-H.; Xu, P.; Zhang, B.; Mack, N. H.; Tsai, H.; Chiang, L. Y.; Wang, H.-L. Polymer-Assisted Preparation of Metal Nanoparticles with Controlled Size and Morphology J. Mater. Chem. 2011, 21, 2550-2554
    • (2011) J. Mater. Chem. , vol.21 , pp. 2550-2554
    • Jeon, S.-H.1    Xu, P.2    Zhang, B.3    Mack, N.H.4    Tsai, H.5    Chiang, L.Y.6    Wang, H.-L.7
  • 19
    • 26244465659 scopus 로고    scopus 로고
    • Applications of Hybrid Organic-Inorganic Nanocomposites
    • Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. Applications of Hybrid Organic-Inorganic Nanocomposites J. Mater. Chem. 2005, 15, 3559-3592
    • (2005) J. Mater. Chem. , vol.15 , pp. 3559-3592
    • Sanchez, C.1    Julian, B.2    Belleville, P.3    Popall, M.4
  • 20
    • 51149103482 scopus 로고    scopus 로고
    • Supported Gold Nanoparticles as Catalysts for Organic Reactions
    • Corma, A.; Garcia, H. Supported Gold Nanoparticles as Catalysts for Organic Reactions Chem. Soc. Rev. 2008, 37, 2096-2126
    • (2008) Chem. Soc. Rev. , vol.37 , pp. 2096-2126
    • Corma, A.1    Garcia, H.2
  • 21
    • 0037420379 scopus 로고    scopus 로고
    • Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors
    • Wang, J.; Musameh, M.; Lin, Y. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors J. Am. Chem. Soc. 2003, 125, 2408-2409
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 2408-2409
    • Wang, J.1    Musameh, M.2    Lin, Y.3
  • 22
    • 28444450780 scopus 로고    scopus 로고
    • Nanostructured Copper Particles-Incorporated Nafion-Modified Electrode for Oxygen Reduction
    • Selvaraju, T.; Ramaraj, R. Nanostructured Copper Particles-Incorporated Nafion-Modified Electrode for Oxygen Reduction Pramana 2005, 65, 713-722
    • (2005) Pramana , vol.65 , pp. 713-722
    • Selvaraju, T.1    Ramaraj, R.2
  • 23
    • 33845973032 scopus 로고    scopus 로고
    • Nanostructured Metal Particle-Modified Electrodes for Electrocatalytic and Sensor Applications
    • Ramaraj, R. Nanostructured Metal Particle-Modified Electrodes for Electrocatalytic and Sensor Applications J. Chem. Sci. 2006, 118, 593-600
    • (2006) J. Chem. Sci. , vol.118 , pp. 593-600
    • Ramaraj, R.1
  • 24
    • 48449087503 scopus 로고    scopus 로고
    • Electrochemical and in Situ Spectroelectrochemical Studies of Gold Nanoparticles Immobilized Nafion Matrix Modified Electrode
    • Selvaraju, T.; Sivagami, S.; Thangavel, S.; Ramaraj, R. Electrochemical and in Situ Spectroelectrochemical Studies of Gold Nanoparticles Immobilized Nafion Matrix Modified Electrode Bull. Mater. Sci. 2008, 31, 487-494
    • (2008) Bull. Mater. Sci. , vol.31 , pp. 487-494
    • Selvaraju, T.1    Sivagami, S.2    Thangavel, S.3    Ramaraj, R.4
  • 25
    • 79551489749 scopus 로고    scopus 로고
    • Nafion Stabilized Silver Nanoparticles Modified Electrode and Its Application to Cr(VI) Detection
    • Xing, S.; Xu, H.; Chen, J.; Shi, G.; Jin, L. Nafion Stabilized Silver Nanoparticles Modified Electrode and Its Application to Cr(VI) Detection J. Electroanal. Chem. 2011, 652, 60-65
    • (2011) J. Electroanal. Chem. , vol.652 , pp. 60-65
    • Xing, S.1    Xu, H.2    Chen, J.3    Shi, G.4    Jin, L.5
  • 26
    • 79956204388 scopus 로고    scopus 로고
    • Development of Artificial Muscles Based on Electroactive Ionomeric Polymer-Metal Composites
    • Hirano, L. A.; Escote, M. T.; Martins-Filho, L. S.; Mantovani, G. L.; Scuracchio, C. H. Development of Artificial Muscles Based on Electroactive Ionomeric Polymer-Metal Composites Artif. Organs 2011, 35, 478-483
    • (2011) Artif. Organs , vol.35 , pp. 478-483
    • Hirano, L.A.1    Escote, M.T.2    Martins-Filho, L.S.3    Mantovani, G.L.4    Scuracchio, C.H.5
  • 28
    • 33750208865 scopus 로고    scopus 로고
    • Formation of Silver Nanoparticles in Poly(perfluorosulfonic) Acid Membrane
    • Sachdeva, A.; Sodaye, S.; Pandey, A. K.; Goswami, A. Formation of Silver Nanoparticles in Poly(perfluorosulfonic) Acid Membrane Anal. Chem. 2006, 78, 7169-7174
    • (2006) Anal. Chem. , vol.78 , pp. 7169-7174
    • Sachdeva, A.1    Sodaye, S.2    Pandey, A.K.3    Goswami, A.4
  • 29
    • 77949313831 scopus 로고    scopus 로고
    • Inclusion of Silver Nanoparticles in Host Poly (perfluorosulfonic) Acid Membrane using Ionic and Non-ionic Reductants
    • Kumar, R.; Pandey, A. K.; Dhara, S.; Misra, N. L.; Ramagiri, S. V.; Bellare, J. R.; Goswami, A. Inclusion of Silver Nanoparticles in Host Poly (perfluorosulfonic) Acid Membrane using Ionic and Non-ionic Reductants J. Membr. Sci. 2010, 352, 247-254
    • (2010) J. Membr. Sci. , vol.352 , pp. 247-254
    • Kumar, R.1    Pandey, A.K.2    Dhara, S.3    Misra, N.L.4    Ramagiri, S.V.5    Bellare, J.R.6    Goswami, A.7
  • 30
    • 84879118092 scopus 로고    scopus 로고
    • Local Conditions Influencing In-Situ Formation of Different Shaped Silver Nanostructures and Subsequent Reorganizations in Ionomer Membrane
    • Patra, S.; Sen, D.; Pandey, A. K.; Agarwal, C.; Ramagiri, S. V.; Bellare, J. R.; Mazumder, S.; Goswami, A. Local Conditions Influencing In-Situ Formation of Different Shaped Silver Nanostructures and Subsequent Reorganizations in Ionomer Membrane J. Phys. Chem. C 2013, 17, 12026-12037
    • (2013) J. Phys. Chem. C , vol.17 , pp. 12026-12037
    • Patra, S.1    Sen, D.2    Pandey, A.K.3    Agarwal, C.4    Ramagiri, S.V.5    Bellare, J.R.6    Mazumder, S.7    Goswami, A.8
  • 31
    • 0035960169 scopus 로고    scopus 로고
    • Study of Self-Diffusion of Monovalent and Divalent Cations in Nafion-117 Ion-Exchange Membrane
    • Goswami, A.; Acharya, A.; Pandey, A. K. Study of Self-Diffusion of Monovalent and Divalent Cations in Nafion-117 Ion-Exchange Membrane J. Phys. Chem. B 2001, 105, 9196-9201
    • (2001) J. Phys. Chem. B , vol.105 , pp. 9196-9201
    • Goswami, A.1    Acharya, A.2    Pandey, A.K.3
  • 32
    • 0742321711 scopus 로고    scopus 로고
    • What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method?
    • Pillai, Z. S.; Kamat, P. V. What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method? J. Phys. Chem. B 2004, 108, 945-951
    • (2004) J. Phys. Chem. B , vol.108 , pp. 945-951
    • Pillai, Z.S.1    Kamat, P.V.2
  • 33
    • 67049113956 scopus 로고    scopus 로고
    • Shape Control of Silver Nanoparticles by Stepwise Citrate Reduction
    • Dong, X.; Ji, X.; Wu, H.; Zhao, L.; Li, J.; Yang, W. Shape Control of Silver Nanoparticles by Stepwise Citrate Reduction J. Phys. Chem. C 2009, 113, 6573-6576
    • (2009) J. Phys. Chem. C , vol.113 , pp. 6573-6576
    • Dong, X.1    Ji, X.2    Wu, H.3    Zhao, L.4    Li, J.5    Yang, W.6
  • 34
    • 0011324854 scopus 로고    scopus 로고
    • Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate
    • Henglein, A.; Giersig, M. Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate J. Phys. Chem. B 1999, 103, 9533-9539
    • (1999) J. Phys. Chem. B , vol.103 , pp. 9533-9539
    • Henglein, A.1    Giersig, M.2
  • 35
    • 0034818406 scopus 로고    scopus 로고
    • Growth of Silver Colloidal Particles Obtained by Citrate Reduction to Increase the Raman Enhancement Factor
    • Rivas, L.; Sanchez-Cortes, S.; García-Ramos, J. V.; Morcillo, G. Growth of Silver Colloidal Particles Obtained by Citrate Reduction to Increase the Raman Enhancement Factor Langmuir 2001, 17, 574-577
    • (2001) Langmuir , vol.17 , pp. 574-577
    • Rivas, L.1    Sanchez-Cortes, S.2    García-Ramos, J.V.3    Morcillo, G.4
  • 36
    • 58149131226 scopus 로고    scopus 로고
    • Synthesis and Antimicrobial Activity of Silver Citrate Complexes, Hindawi Publishing Corporation
    • 10.1155/2008/436458
    • Djokic, S. Synthesis and Antimicrobial Activity of Silver Citrate Complexes, Hindawi Publishing Corporation Bioinorg. Chem. Appl. 2008, 10.1155/2008/436458
    • (2008) Bioinorg. Chem. Appl.
    • Djokic, S.1
  • 37
    • 7644219892 scopus 로고    scopus 로고
    • State of Understanding of Nafion
    • Mauritz, K. A.; Moore, R. B. State of Understanding of Nafion Chem. Rev. 2004, 104, 4535-4585
    • (2004) Chem. Rev. , vol.104 , pp. 4535-4585
    • Mauritz, K.A.1    Moore, R.B.2
  • 38
    • 34547358683 scopus 로고    scopus 로고
    • Photovoltage and Photocatalyzed Growth in Citrate-Stabilized Colloidal Silver Nanocrystals
    • Redmond, P. L.; Wu, X.; Brus, L. Photovoltage and Photocatalyzed Growth in Citrate-Stabilized Colloidal Silver Nanocrystals J. Phys. Chem. C 2007, 111, 8942-8947
    • (2007) J. Phys. Chem. C , vol.111 , pp. 8942-8947
    • Redmond, P.L.1    Wu, X.2    Brus, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.