메뉴 건너뛰기




Volumn 28, Issue 6, 2014, Pages 3018-3034

Assessment of the SWMM model uncertainties within the generalized likelihood uncertainty estimation (GLUE) framework for a high-resolution urban sewershed

Author keywords

GLUE; Parameter estimation; Sampling approach; SWMM; Uncertainty estimation

Indexed keywords

GENERALIZED LIKELIHOOD UNCERTAINTY ESTIMATION; HYDROLOGICAL PROPERTIES; HYDROLOGICAL RESPONSE; PARAMETER DISTRIBUTIONS; SAMPLING IMPORTANCE RESAMPLING; STORMWATER MANAGEMENT MODEL(SWMM); SWMM; UNCERTAINTY ESTIMATION;

EID: 84896732405     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.9869     Document Type: Article
Times cited : (62)

References (63)
  • 1
    • 0032078609 scopus 로고    scopus 로고
    • Use of a genetic algorithm and multi-objective programming for calibration of a hydrologic model
    • Balascio CC, Palmeri DJ, Gao H. 1998. Use of a genetic algorithm and multi-objective programming for calibration of a hydrologic model. Transactions of the ASABE 41(3): 615-619.
    • (1998) Transactions of the ASABE , vol.41 , Issue.3 , pp. 615-619
    • Balascio, C.C.1    Palmeri, D.J.2    Gao, H.3
  • 2
    • 41049113482 scopus 로고    scopus 로고
    • Automatic calibration of the U.S.EPA SWMM model for a large urban catchment
    • Barco J, Wong KM, Stenstrom MK. 2008. Automatic calibration of the U.S.EPA SWMM model for a large urban catchment. Journal of Hydraulic Engineering 134(4): 466-474.
    • (2008) Journal of Hydraulic Engineering , vol.134 , Issue.4 , pp. 466-474
    • Barco, J.1    Wong, K.M.2    Stenstrom, M.K.3
  • 3
    • 17844388511 scopus 로고    scopus 로고
    • Bayesian uncertainty assessment in deterministic models for environmental risk assessment. NRCSE Tech. Rep. Ser. U.S. Environ. Prot. Agency, Washington, DC.
    • Bates SC, Raftery AE, Cullen AC. 2000. Bayesian uncertainty assessment in deterministic models for environmental risk assessment. NRCSE Tech. Rep. Ser. 58, 17pp., U.S. Environ. Prot. Agency, Washington, DC.
    • (2000) , vol.58 , pp. 17
    • Bates, S.C.1    Raftery, A.E.2    Cullen, A.C.3
  • 4
    • 0024471068 scopus 로고
    • Changing ideas in hydrology - the case of physically-based models
    • Beven KJ. 1989. Changing ideas in hydrology - the case of physically-based models. Journal of Hydrology 105(1-2): 157-172.
    • (1989) Journal of Hydrology , vol.105 , Issue.1-2 , pp. 157-172
    • Beven, K.J.1
  • 5
    • 0027788553 scopus 로고
    • Prophecy, reality and uncertainty in distributed hydrological modeling
    • Beven KJ. 1993. Prophecy, reality and uncertainty in distributed hydrological modeling. Advances in Water Resources 16(1): 41-51.
    • (1993) Advances in Water Resources , vol.16 , Issue.1 , pp. 41-51
    • Beven, K.J.1
  • 6
    • 0031182317 scopus 로고    scopus 로고
    • TOPMODEL: a critique
    • Beven KJ. 1997. TOPMODEL: a critique. Hydrological Processes 11(9): 1069-1085.
    • (1997) Hydrological Processes , vol.11 , Issue.9 , pp. 1069-1085
    • Beven, K.J.1
  • 7
    • 0033762270 scopus 로고    scopus 로고
    • Uniqueness of place and process representations in hydrological modeling
    • Beven KJ. 2000. Uniqueness of place and process representations in hydrological modeling. Hydrology and Earth System Sciences 4(2): 203-213.
    • (2000) Hydrology and Earth System Sciences , vol.4 , Issue.2 , pp. 203-213
    • Beven, K.J.1
  • 8
    • 33644526990 scopus 로고    scopus 로고
    • A manifesto for the equifinality thesis
    • Beven KJ. 2006. A manifesto for the equifinality thesis. Journal of Hydrology 320(1-2): 18-36.
    • (2006) Journal of Hydrology , vol.320 , Issue.1-2 , pp. 18-36
    • Beven, K.J.1
  • 9
    • 0027009437 scopus 로고
    • The future of distributed models: model calibration and uncertainty prediction
    • Beven KJ, Binley A. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes 6(3): 279-298.
    • (1992) Hydrological Processes , vol.6 , Issue.3 , pp. 279-298
    • Beven, K.J.1    Binley, A.2
  • 10
    • 0035426008 scopus 로고    scopus 로고
    • Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology
    • Beven KJ, Freer J. 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology. Journal of Hydrology 249: 11-29.
    • (2001) Journal of Hydrology , vol.249 , pp. 11-29
    • Beven, K.J.1    Freer, J.2
  • 11
    • 0037083597 scopus 로고    scopus 로고
    • On constraining TOPMODEL hydrograph simulations using partial saturated area information
    • Blazkova S, Beven KJ, Kulasova A. 2002. On constraining TOPMODEL hydrograph simulations using partial saturated area information. Hydrological Processes 16(2): 441-458.
    • (2002) Hydrological Processes , vol.16 , Issue.2 , pp. 441-458
    • Blazkova, S.1    Beven, K.J.2    Kulasova, A.3
  • 13
    • 33845866658 scopus 로고    scopus 로고
    • Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework
    • Choi HT, Beven K. 2007. Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework. Journal of Hydrology 332(3-4): 316-336.
    • (2007) Journal of Hydrology , vol.332 , Issue.3-4 , pp. 316-336
    • Choi, H.T.1    Beven, K.2
  • 14
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland WS. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74(368): 829-836.
    • (1979) Journal of the American Statistical Association , vol.74 , Issue.368 , pp. 829-836
    • Cleveland, W.S.1
  • 15
    • 84947318637 scopus 로고
    • Locally-weighted regression: an approach to regression analysis by local fitting
    • Cleveland WS, Devlin SJ. 1988. Locally-weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 83(403): 596-610.
    • (1988) Journal of the American Statistical Association , vol.83 , Issue.403 , pp. 596-610
    • Cleveland, W.S.1    Devlin, S.J.2
  • 17
    • 34447632660 scopus 로고    scopus 로고
    • Evaluation of spatially variable control parameters in a complex catchment modeling system: a genetic algorithm application
    • Fang T, Ball JE. 2007. Evaluation of spatially variable control parameters in a complex catchment modeling system: a genetic algorithm application. Journalof Hydroinformatics 9(3): 163-173.
    • (2007) Journalof Hydroinformatics , vol.9 , Issue.3 , pp. 163-173
    • Fang, T.1    Ball, J.E.2
  • 18
    • 84896722741 scopus 로고
    • A compendium of conjugate priors. In progress report: extension and enhancement of methods for setting data quality objectives. Technical report, Cornell University.
    • Fink D. 1995. A compendium of conjugate priors. In progress report: extension and enhancement of methods for setting data quality objectives. Technical report, Cornell University.
    • (1995)
    • Fink, D.1
  • 19
    • 4544344281 scopus 로고    scopus 로고
    • Multivariate seasonal period model rejection within the generalised likelihood uncertainty estimation procedure
    • Water Science and Application Series, Duan Q, Gupta H, Sorooshian S, Rousseau AN, Turcotte R (eds). AGU: Washington
    • Freer JE, Beven KJ, Peters NE. 2003. Multivariate seasonal period model rejection within the generalised likelihood uncertainty estimation procedure. In Calibration of Watershed Models, Water Science and Application Series, Duan Q, Gupta H, Sorooshian S, Rousseau AN, Turcotte R (eds). AGU: Washington; p. 346.
    • (2003) Calibration of Watershed Models , pp. 346
    • Freer, J.E.1    Beven, K.J.2    Peters, N.E.3
  • 23
    • 17844371080 scopus 로고    scopus 로고
    • Bayesian estimation of input parameters of a nitrogen cycle model applied to a forested reference watershed, Hubbard Brook Watershed Six
    • Hong B, Strawderman RL, Swaney DP, Weinstein DA. 2005. Bayesian estimation of input parameters of a nitrogen cycle model applied to a forested reference watershed, Hubbard Brook Watershed Six. Water Resources Research 41: W03007.
    • (2005) Water Resources Research , vol.41
    • Hong, B.1    Strawderman, R.L.2    Swaney, D.P.3    Weinstein, D.A.4
  • 24
    • 84896712706 scopus 로고
    • Storm water management model user's manual, version 4. Environmental Protection Agency, Georgia.
    • Huber WC, Dickinson RE. 1992. Storm water management model user's manual, version 4. Environmental Protection Agency, Georgia.
    • (1992)
    • Huber, W.C.1    Dickinson, R.E.2
  • 25
    • 84896733207 scopus 로고
    • Storm water management model: version 4. Environmental Protection Agency, United States.
    • 2Huber WC, Dickinson RE, Barnwell Jr TO. 1988. Storm water management model: version 4. Environmental Protection Agency, United States.
    • (1988)
    • Huber, W.C.1    Dickinson, R.E.2    Barnwell Jr, T.O.3
  • 26
    • 39549105604 scopus 로고    scopus 로고
    • Uncertainty analysis for watershed modeling using generalized likelihood uncertainty estimation with multiple calibration measures
    • Jia Y, Culver TB. 2008. Uncertainty analysis for watershed modeling using generalized likelihood uncertainty estimation with multiple calibration measures. Journal of Water Resources Planning. and Management 134(2): 97-106.
    • (2008) Journal of Water Resources Planning. and Management , vol.134 , Issue.2 , pp. 97-106
    • Jia, Y.1    Culver, T.B.2
  • 27
    • 0344938263 scopus 로고    scopus 로고
    • Use of spatially distributed water table observations to constrain uncertainty in a rainfall-runoff model
    • Lamb R, Beven KJ, Myrabø S. 1998. Use of spatially distributed water table observations to constrain uncertainty in a rainfall-runoff model. Advances in Water Resources 22(4): 305-317.
    • (1998) Advances in Water Resources , vol.22 , Issue.4 , pp. 305-317
    • Lamb, R.1    Beven, K.J.2    Myrabø, S.3
  • 28
    • 0034322487 scopus 로고    scopus 로고
    • Unified approach to probabilistic and possibilistic analysis of uncertain systems
    • Langley RS. 2000. Unified approach to probabilistic and possibilistic analysis of uncertain systems. Journal of Engineering Mechanics 126: 1163-1172.
    • (2000) Journal of Engineering Mechanics , vol.126 , pp. 1163-1172
    • Langley, R.S.1
  • 30
    • 84896704358 scopus 로고
    • Metcalf and Eddy Inc. Storm water management model, final report. US EPA, Water Quality Office, Water Pollution Control Research Series, Washington DC.
    • Metcalf and Eddy Inc. 1971. Storm water management model, final report. US EPA, Water Quality Office, Water Pollution Control Research Series, Washington DC.
    • (1971)
  • 31
    • 25844526502 scopus 로고    scopus 로고
    • Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations
    • DOI: 10.1029/2004WR003826
    • Montanari A. 2005. Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations. Water Resources Research 41: W08406. DOI: 10.1029/2004WR003826
    • (2005) Water Resources Research , vol.41
    • Montanari, A.1
  • 32
    • 33947533125 scopus 로고    scopus 로고
    • What do we mean by 'uncertainty'? The need for a consistent wording about uncertainty assessment in hydrology
    • Montanari A. 2007. What do we mean by 'uncertainty'? The need for a consistent wording about uncertainty assessment in hydrology. Hydrological Processes 21: 841-845.
    • (2007) Hydrological Processes , vol.21 , pp. 841-845
    • Montanari, A.1
  • 34
    • 18844381609 scopus 로고    scopus 로고
    • Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model
    • Muleta MK, Nicklow JW. 2005. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. Journal of Hydrology 306(1-4): 127-145.
    • (2005) Journal of Hydrology , vol.306 , Issue.1-4 , pp. 127-145
    • Muleta, M.K.1    Nicklow, J.W.2
  • 35
    • 84896731777 scopus 로고    scopus 로고
    • MWH Soft Inc. InfoSWMM user manual, MWH Soft Inc., Pasadena, California.
    • MWH Soft Inc. 2005. InfoSWMM user manual, MWH Soft Inc., Pasadena, California.
    • (2005)
  • 36
    • 84896722716 scopus 로고    scopus 로고
    • Natural Resources Conservation Service (NRCS). Soil Survey Geographic (SSURGO) database for Onondaga County, New York. U.S. Department of Agriculture, NRCS, Fort Worth, Texas.
    • Natural Resources Conservation Service (NRCS). 2010. Soil Survey Geographic (SSURGO) database for Onondaga County, New York. U.S. Department of Agriculture, NRCS, Fort Worth, Texas.
    • (2010)
  • 37
    • 84896712584 scopus 로고    scopus 로고
    • NYS Cyber Security. NYS Digital Ortho-imagery Program (NYSDOP): 2009 imagery in the City of Syracuse. NYS CSCIC, Albany, New York.
    • NYS Cyber Security. 2009. NYS Digital Ortho-imagery Program (NYSDOP): 2009 imagery in the City of Syracuse. NYS CSCIC, Albany, New York.
    • (2009)
  • 38
    • 0035961496 scopus 로고    scopus 로고
    • Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments
    • Perrin C, Michel C, Andréassian V. 2001. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. Journal of Hydrology 242(3-4): 275-301.
    • (2001) Journal of Hydrology , vol.242 , Issue.3-4 , pp. 275-301
    • Perrin, C.1    Michel, C.2    Andréassian, V.3
  • 41
    • 84950788916 scopus 로고
    • Comment: the calculation of posterior distributions by data augmentation
    • Rubin DB. 1987. Comment: the calculation of posterior distributions by data augmentation. Journal of the American Statistical Association 82: 543-546.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 543-546
    • Rubin, D.B.1
  • 43
    • 0037093163 scopus 로고    scopus 로고
    • Making best use of model evaluations to compute sensitivity indices
    • Saltelli A. 2002. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications 145(2): 280-297.
    • (2002) Computer Physics Communications , vol.145 , Issue.2 , pp. 280-297
    • Saltelli, A.1
  • 45
    • 0001244976 scopus 로고    scopus 로고
    • Sensitivity analysis as an ingredient of modeling
    • Saltelli A, Tarantola S, Campolongo F. 2000. Sensitivity analysis as an ingredient of modeling. Statistical Science 15(4): 377-395.
    • (2000) Statistical Science , vol.15 , Issue.4 , pp. 377-395
    • Saltelli, A.1    Tarantola, S.2    Campolongo, F.3
  • 46
    • 84896710498 scopus 로고
    • Hydrologic systems. Volume I: Rainfall-Runoff Modeling. Prentice Hall, Englewood Cliffs, New Jersey.
    • Singh VP. 1988. Hydrologic systems. Volume I: Rainfall-Runoff Modeling. Prentice Hall, Englewood Cliffs, New Jersey.
    • (1988)
    • Singh, V.P.1
  • 47
    • 0021034448 scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: the question of parameter observability and uniqueness
    • Sorooshian S, Gupta VK. 1983. Automatic calibration of conceptual rainfall-runoff models: the question of parameter observability and uniqueness. Water Resources Research 19(1): 260-268.
    • (1983) Water Resources Research , vol.19 , Issue.1 , pp. 260-268
    • Sorooshian, S.1    Gupta, V.K.2
  • 48
    • 0002857056 scopus 로고
    • Model calibration
    • Singh VP. (ed). Water Resources Publications: Highland Ranch, Colorado.
    • Sorooshian S, Gupta VK. 1995. Model calibration. In Computer Models for Watershed Hydrology, Singh VP. (ed). Water Resources Publications: Highland Ranch, Colorado; 23-68.
    • (1995) Computer Models for Watershed Hydrology , pp. 23-68
    • Sorooshian, S.1    Gupta, V.K.2
  • 49
    • 69949188688 scopus 로고    scopus 로고
    • Appraisal of the generalized likelihood uncertainty estimation (GLUE) method
    • DOI: 10.1029/2008WR006822
    • Stedinger JR, Vogel RM, Lee SU, Batchelder R. 2008. Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resources Research 44: W00B06. DOI: 10.1029/2008WR006822
    • (2008) Water Resources Research , vol.44
    • Stedinger, J.R.1    Vogel, R.M.2    Lee, S.U.3    Batchelder, R.4
  • 50
    • 84874727818 scopus 로고    scopus 로고
    • Coupling human preferences with biophysical processes: modeling the effect of citizen attitudes on potential urban stormwater runoff
    • DOI: 10.1007/s11252-013-0304-5
    • Sun N, Hall M. 2013. Coupling human preferences with biophysical processes: modeling the effect of citizen attitudes on potential urban stormwater runoff. Urban Ecosystems. DOI: 10.1007/s11252-013-0304-5
    • (2013) Urban Ecosystems
    • Sun, N.1    Hall, M.2
  • 51
    • 84907617800 scopus 로고    scopus 로고
    • Impact of SWMM catchment discretization: a case study in Syracuse, NY
    • DOI: 10.1061/(ASCE)HE.1943-5584.0000777
    • Sun N, Hall MHP, Hong B, Zhang L. 2013. Impact of SWMM catchment discretization: a case study in Syracuse, NY. Journal of Hydrologic Engineering. DOI: 10.1061/(ASCE)HE.1943-5584.0000777
    • (2013) Journal of Hydrologic Engineering
    • Sun, N.1    Hall, M.H.P.2    Hong, B.3    Zhang, L.4
  • 53
    • 45549099666 scopus 로고    scopus 로고
    • Event based uncertainty assessment in urban drainage modelling, applying the GLUE methodology
    • Thorndahl S, Beven KJ, Jensen JB, Schaarup-Jensen K. 2008. Event based uncertainty assessment in urban drainage modelling, applying the GLUE methodology. Journal of Hydrology 357(3-4): 421-437.
    • (2008) Journal of Hydrology , vol.357 , Issue.3-4 , pp. 421-437
    • Thorndahl, S.1    Beven, K.J.2    Jensen, J.B.3    Schaarup-Jensen, K.4
  • 54
    • 0032001096 scopus 로고    scopus 로고
    • Runoff quality prediction from small urban catchment using SWMM
    • Tsihrintzis VA, Hamid R. 1998. Runoff quality prediction from small urban catchment using SWMM. Hydrological Processes 12(2): 311-329.
    • (1998) Hydrological Processes , vol.12 , Issue.2 , pp. 311-329
    • Tsihrintzis, V.A.1    Hamid, R.2
  • 55
    • 84896694844 scopus 로고    scopus 로고
    • U.S. Geological Survey (USGS). Digital elevation models (DEM) - New York State. USGS, Reston, VA.
    • U.S. Geological Survey (USGS). 2008. Digital elevation models (DEM) - New York State. USGS, Reston, VA.
    • (2008)
  • 56
    • 84896724472 scopus 로고
    • U.S. Soil Conservation Service (U.S. SCS). Technical release 55: urban hydrology for small watersheds. U.S. Department of Agriculture (USDA).
    • U.S. Soil Conservation Service (U.S. SCS). 1986. Technical release 55: urban hydrology for small watersheds. U.S. Department of Agriculture (USDA).
    • (1986)
  • 57
    • 84896701284 scopus 로고    scopus 로고
    • U.S. EPA. Protecting water quality from urban runoff. United States Environmental Protection Agency, Washington, D.C.
    • U.S. EPA. 2003. Protecting water quality from urban runoff. United States Environmental Protection Agency, Washington, D.C.
    • (2003)
  • 58
    • 84896715851 scopus 로고    scopus 로고
    • U.S. EPA. Report summary: Dallas urban heat island. United States Environmental Protection Agency, Washington, D.C.
    • U.S. EPA. 2009. Report summary: Dallas urban heat island. United States Environmental Protection Agency, Washington, D.C.
    • (2009)
  • 59
    • 84896730418 scopus 로고    scopus 로고
    • U.S. EPA. Green infrastructure approaches to urban stormwater management. United States Environmental Protection Agency, Washington, D.C.
    • U.S. EPA. 2010. Green infrastructure approaches to urban stormwater management. United States Environmental Protection Agency, Washington, D.C.
    • (2010)
  • 60
    • 84896738008 scopus 로고
    • The effects of forestry on water resources. Proceedings of the W. Kelly Mosley Environmental Forum.
    • Ursic SJ, Douglass JE. 1978. The effects of forestry on water resources. Proceedings of the W. Kelly Mosley Environmental Forum.
    • (1978)
    • Ursic, S.J.1    Douglass, J.E.2
  • 63
    • 37549062601 scopus 로고    scopus 로고
    • An empirical method to improve the prediction limits of the GLUE methodology in rainfall-runoff modeling
    • Xiong L, O'Connor KM. 2008. An empirical method to improve the prediction limits of the GLUE methodology in rainfall-runoff modeling. Journal of Hydrology 349(1-2): 115-124.
    • (2008) Journal of Hydrology , vol.349 , Issue.1-2 , pp. 115-124
    • Xiong, L.1    O'Connor, K.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.