메뉴 건너뛰기




Volumn 41, Issue 11, 2013, Pages 2367-2380

Computational methodology to determine fluid related parameters of non regular three-dimensional scaffolds

Author keywords

Computational fluid dynamics; Darcy's law; Permeability; Scaffolds; Tissue engineering

Indexed keywords

CELL ENGINEERING; COMPLEX NETWORKS; COMPUTERIZED TOMOGRAPHY; FLOW OF FLUIDS; LACTIC ACID; MECHANICAL PERMEABILITY; SCAFFOLDS; SCAFFOLDS (BIOLOGY); SHEAR STRESS; TISSUE; TISSUE ENGINEERING;

EID: 84896701510     PISSN: 00906964     EISSN: 15739686     Source Type: Journal    
DOI: 10.1007/s10439-013-0849-8     Document Type: Article
Times cited : (22)

References (40)
  • 2
    • 33646017698 scopus 로고    scopus 로고
    • Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration
    • 16584771 10.1016/j.biomaterials.2006.02.039 1:CAS:528: DC%2BD28XjslyitLw%3D
    • Adachi, T., Y. Osako, M. Tanaka, M. Hojo, and S. J. Hollister. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964-3972, 2006.
    • (2006) Biomaterials , vol.27 , Issue.21 , pp. 3964-3972
    • Adachi, T.1    Osako, Y.2    Tanaka, M.3    Hojo, M.4    Hollister, S.J.5
  • 3
    • 0001580575 scopus 로고
    • Deposition of particles under external forces in laminar-flow through parallel-plate and cylindrical channels
    • 10.1016/0021-9797(81)90193-4
    • Adamczyk, Z., and T. G. M. Vandeven. Deposition of particles under external forces in laminar-flow through parallel-plate and cylindrical channels. J. Colloid Interface Sci. 80(2):340-356, 1981.
    • (1981) J. Colloid Interface Sci. , vol.80 , Issue.2 , pp. 340-356
    • Adamczyk, Z.1    Vandeven, T.G.M.2
  • 4
    • 70049116400 scopus 로고    scopus 로고
    • Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties
    • 10.1002/jbm.b.31389
    • Alberich, B. A., D. Moratal, J. L. Escobar, J. C. Rodríguez, A. Vallés-Lluch, L. Martí-Bonmatí, et al. Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. J. Biomed. Mater. Res. B Appl. Biomater. 91B(1):191-202, 2009.
    • (2009) J. Biomed. Mater. Res. B Appl. Biomater. , vol.91 , Issue.1 , pp. 191-202
    • Alberich, B.A.1    Moratal, D.2    Escobar, J.L.3    Rodríguez, J.C.4    Vallés-Lluch, A.5    Martí-Bonmatí, L.6
  • 5
    • 44949248264 scopus 로고    scopus 로고
    • Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds
    • 18347950 10.1007/s10856-008-3422-5 1:CAS:528:DC%2BD1cXms1yqsrY%3D
    • Al-Munajjed, A., M. Hien, R. Kujat, J. P. Gleeson, and J. Hammer. Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds. J. Mater. Sci. Mater. Med. 19(8):2859-2864, 2008.
    • (2008) J. Mater. Sci. Mater. Med. , vol.19 , Issue.8 , pp. 2859-2864
    • Al-Munajjed, A.1    Hien, M.2    Kujat, R.3    Gleeson, J.P.4    Hammer, J.5
  • 6
    • 80053146421 scopus 로고    scopus 로고
    • Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor
    • 21953870 10.1002/term.372 1:CAS:528:DC%2BC3MXht1yitLrJ
    • Alves da Silva, M. L., A. Martins, A. R. Costa-Pinto, V. M. Correlo, P. Sol, M. Bhattacharya, S. Faria, R. L. Reis, and N. M. Neves. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J. Tissue Eng. Regen. Med. 5(9):722-732, 2011.
    • (2011) J. Tissue Eng. Regen. Med. , vol.5 , Issue.9 , pp. 722-732
    • Alves Da Silva, M.L.1    Martins, A.2    Costa-Pinto, A.R.3    Correlo, V.M.4    Sol, P.5    Bhattacharya, M.6    Faria, S.7    Reis, R.L.8    Neves, N.M.9
  • 7
    • 84896715176 scopus 로고    scopus 로고
    • Canonsburg, PA: Ansys Software
    • Ansys (2010) CFX Theory User Manual. Canonsburg, PA: Ansys Software.
    • (2010) CFX Theory User Manual
  • 8
    • 34247610805 scopus 로고    scopus 로고
    • Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: Fabrication, mechanical properties, and finite element modeling
    • 10.1002/jbm.b.30683
    • Brígido, R. D., J. M. Estellés, J. A. Sanz, J. M. García-Aznar, and M. S. Sánchez. Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: fabrication, mechanical properties, and finite element modeling. J. Biomed. Mater. Res. B Appl. Biomater. 81B(2):448-455, 2007.
    • (2007) J. Biomed. Mater. Res. B Appl. Biomater. , vol.81 , Issue.2 , pp. 448-455
    • Brígido, R.D.1    Estellés, J.M.2    Sanz, J.A.3    García-Aznar, J.M.4    Sánchez, M.S.5
  • 9
    • 35348975035 scopus 로고    scopus 로고
    • Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: Application of mechanobiological models in tissue engineering
    • 17897712 10.1016/j.biomaterials.2007.09.003 1:CAS:528:DC%2BD2sXht1WqtbfM
    • Byrne, P. D., D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast. Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544-5554, 2007.
    • (2007) Biomaterials , vol.28 , pp. 5544-5554
    • Byrne, P.D.1    Lacroix, D.2    Planell, J.A.3    Kelly, D.J.4    Prendergast, P.J.5
  • 10
    • 33947684913 scopus 로고    scopus 로고
    • A permeability measurement system for tissue engineering scaffolds
    • 10.1088/0957-0233/18/1/026 1:CAS:528:DC%2BD2sXht1ejt7o%3D
    • Chor, M. V., and W. Li. A permeability measurement system for tissue engineering scaffolds. Meas. Sci. Technol. 18(1):208-216, 2007.
    • (2007) Meas. Sci. Technol. , vol.18 , Issue.1 , pp. 208-216
    • Chor, M.V.1    Li, W.2
  • 11
    • 0025287239 scopus 로고
    • Receptor-mediated adhesion phenomena-model studies with the radial-flow detachment assay
    • 10.1016/S0006-3495(90)82357-2 1:CAS:528:DyaK3cXkslKjs74%3D
    • Cozensroberts, C., J. A. Quinn, and D. A. Lauffenburger. Receptor-mediated adhesion phenomena-model studies with the radial-flow detachment assay. Biophys. J. 58(1):107-125, 1990.
    • (1990) Biophys. J. , vol.58 , Issue.1 , pp. 107-125
    • Cozensroberts, C.1    Quinn, J.A.2    Lauffenburger, D.A.3
  • 12
    • 0036773416 scopus 로고    scopus 로고
    • Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures
    • 12459059 10.1089/10763270260424169 1:CAS:528:DC%2BD38Xpt12gtLo%3D
    • Davisson, T., R. L. Sah, and A. Ratcliffe. Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng. 8(5):807-816, 2002.
    • (2002) Tissue Eng. , vol.8 , Issue.5 , pp. 807-816
    • Davisson, T.1    Sah, R.L.2    Ratcliffe, A.3
  • 14
    • 84858616537 scopus 로고    scopus 로고
    • Permeability analysis of scaffolds for bone tissue engineering
    • 22365847 10.1016/j.jbiomech.2012.01.019 1:STN:280:DC%2BC38vkt1Kgsw%3D%3D
    • Dias, M. R., P. R. Fernandes, J. M. Guedes, and S. J. Hollister. Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 45(6):938-944, 2012.
    • (2012) J. Biomech. , vol.45 , Issue.6 , pp. 938-944
    • Dias, M.R.1    Fernandes, P.R.2    Guedes, J.M.3    Hollister, S.J.4
  • 15
    • 0034744711 scopus 로고    scopus 로고
    • Cellular materials as porous scaffolds for tissue engineering
    • 10.1016/S0079-6425(00)00018-9 1:CAS:528:DC%2BD3MXhvFequrs%3D
    • Freyman, T. M., I. V. Yannas, and L. J. Gibson. Cellular materials as porous scaffolds for tissue engineering. Prog. Mater Sci. 46:273-282, 2001.
    • (2001) Prog. Mater Sci. , vol.46 , pp. 273-282
    • Freyman, T.M.1    Yannas, I.V.2    Gibson, L.J.3
  • 16
    • 33645973252 scopus 로고    scopus 로고
    • Mechanical properties and in vitro biocompatibility of porous zein scaffolds
    • 16527348 10.1016/j.biomaterials.2006.02.019 1:CAS:528: DC%2BD28XjsFeiu74%3D
    • Gong, S., H. Wang, Q. Sun, S. T. Xue, and J. Wang. Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials 27(20):3793-3799, 2006.
    • (2006) Biomaterials , vol.27 , Issue.20 , pp. 3793-3799
    • Gong, S.1    Wang, H.2    Sun, Q.3    Xue, S.T.4    Wang, J.5
  • 17
    • 37249007306 scopus 로고    scopus 로고
    • Potential effect of geometry on wall shear stress distribution across scaffold surfaces
    • 17963042 10.1007/s10439-007-9396-5
    • Gutierrez, R. A., and E. T. Crumpler. Potential effect of geometry on wall shear stress distribution across scaffold surfaces. Ann. Biomed. Eng. 36(1):77-85, 2008.
    • (2008) Ann. Biomed. Eng. , vol.36 , Issue.1 , pp. 77-85
    • Gutierrez, R.A.1    Crumpler, E.T.2
  • 18
    • 0023405068 scopus 로고
    • A dynamic-model for receptor-mediated cell adhesion to surfaces
    • 2820521 10.1016/S0006-3495(87)83236-8 1:STN:280:DyaL1c%2FgtV2jug%3D%3D
    • Hammer, D. A., and D. Lauffenburger. A dynamic-model for receptor-mediated cell adhesion to surfaces. Biophys. J. 52(3):475-487, 1987.
    • (1987) Biophys. J. , vol.52 , Issue.3 , pp. 475-487
    • Hammer, D.A.1    Lauffenburger, D.2
  • 19
    • 28444460178 scopus 로고    scopus 로고
    • A comparison of micro CT with other techniques used in the characterization of scaffolds
    • 16174523 10.1016/j.biomaterials.2005.08.035 1:CAS:528:DC%2BD2MXht1Klu7bF
    • Ho, S. T., and D. W. Hutmacher. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8):1362-1376, 2006.
    • (2006) Biomaterials , vol.27 , Issue.8 , pp. 1362-1376
    • Ho, S.T.1    Hutmacher, D.W.2
  • 20
    • 0142186178 scopus 로고    scopus 로고
    • Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods
    • 14580916 10.1016/S0142-9612(03)00483-6 1:CAS:528:DC%2BD3sXot1Sktb4%3D
    • Ho, M. H., P. Y. Kuo, H. J. Hsieh, T. Y. Hsien, L. T. Hou, J. Y. Lai, and D. M. Wang. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25(1):129-138, 2004.
    • (2004) Biomaterials , vol.25 , Issue.1 , pp. 129-138
    • Ho, M.H.1    Kuo, P.Y.2    Hsieh, H.J.3    Hsien, T.Y.4    Hou, L.T.5    Lai, J.Y.6    Wang, D.M.7
  • 21
    • 39149124477 scopus 로고    scopus 로고
    • State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective
    • 18038415 10.1002/term.24 1:CAS:528:DC%2BD1MXlvV2nt7Y%3D
    • Hutmacher, D. W., J. T. Schantz, C. X. Lam, K. C. Tan, and T. C. Lim. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 1(4):245-260, 2007.
    • (2007) J. Tissue Eng. Regen. Med. , vol.1 , Issue.4 , pp. 245-260
    • Hutmacher, D.W.1    Schantz, J.T.2    Lam, C.X.3    Tan, K.C.4    Lim, T.C.5
  • 23
    • 0037345529 scopus 로고    scopus 로고
    • Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways
    • 12667551 10.1016/S8756-3282(02)00979-1 1:CAS:528:DC%2BD3sXit12gsLw%3D
    • Kapur, S., D. J. Baylink, and K. H. Lau. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32(3):241-251, 2003.
    • (2003) Bone , vol.32 , Issue.3 , pp. 241-251
    • Kapur, S.1    Baylink, D.J.2    Lau, K.H.3
  • 24
    • 12344282814 scopus 로고    scopus 로고
    • Diffusion in musculoskeletal tissue engineering scaffolds: Design issues related to porosity, permeability, architecture, and nutrient mixing
    • 15675684 10.1007/s10439-004-7825-2
    • Karande, T. S., J. L. Ong, and C. M. Agrawal. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann. Biomed. Eng. 32(12):1728-1743, 2004.
    • (2004) Ann. Biomed. Eng. , vol.32 , Issue.12 , pp. 1728-1743
    • Karande, T.S.1    Ong, J.L.2    Agrawal, C.M.3
  • 25
    • 19744379584 scopus 로고    scopus 로고
    • Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects
    • 15922752 10.1016/j.jbiomech.2004.06.026 1:STN:280:DC%2BD2M3nvFWntQ%3D%3D
    • Kelly, D. J., and P. J. Prendergast. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38(7):1413-1422, 2005.
    • (2005) J. Biomech. , vol.38 , Issue.7 , pp. 1413-1422
    • Kelly, D.J.1    Prendergast, P.J.2
  • 26
    • 42049100497 scopus 로고    scopus 로고
    • Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells
    • 18352827 10.1089/tea.2007.0068 1:CAS:528:DC%2BD1cXksFyhur4%3D
    • Kreke, M. R., L. A. Sharp, Y. W. Lee, and A. S. Goldstein. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. Part A 14(4):529-537, 2008.
    • (2008) Tissue Eng. Part A , vol.14 , Issue.4 , pp. 529-537
    • Kreke, M.R.1    Sharp, L.A.2    Lee, Y.W.3    Goldstein, A.S.4
  • 27
    • 33746220383 scopus 로고    scopus 로고
    • Micro-finite element models of bone tissue-engineering scaffolds
    • 16824593 10.1016/j.biomaterials.2006.06.009 1:CAS:528: DC%2BD28Xnt1Kktbs%3D
    • Lacroix, D., A. Chateau, M. P. Ginebra, and J. A. Planell. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27(30):5326-5334, 2006.
    • (2006) Biomaterials , vol.27 , Issue.30 , pp. 5326-5334
    • Lacroix, D.1    Chateau, A.2    Ginebra, M.P.3    Planell, J.A.4
  • 28
    • 0036342923 scopus 로고    scopus 로고
    • A mechano-regulation model for tissue differentiation during fracture healing: Analysis of gap size and loading
    • 12163306 10.1016/S0021-9290(02)00086-6 1:STN:280:DC%2BD38vgvFWluw%3D%3D
    • Lacroix, D., and P. J. Prendergast. A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35(9):1163-1171, 2002.
    • (2002) J. Biomech. , vol.35 , Issue.9 , pp. 1163-1171
    • Lacroix, D.1    Prendergast, P.J.2
  • 29
    • 0037732936 scopus 로고    scopus 로고
    • Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio
    • 12857421 10.1089/107632703322066714 1:CAS:528:DC%2BD3sXltVGrsL4%3D
    • Li, S., J. R. De Wijn, J. Li, P. Layrolle, and K. De Groot. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 9:535-548, 2003.
    • (2003) Tissue Eng. , vol.9 , pp. 535-548
    • Li, S.1    De Wijn, J.R.2    Li, J.3    Layrolle, P.4    De Groot, K.5
  • 30
    • 79951576277 scopus 로고    scopus 로고
    • The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding
    • 21288567 10.1016/j.biomaterials.2011.01.023 1:CAS:528: DC%2BC3MXitFeht7o%3D
    • Melchels, F. P. W., B. Tonnarelli, A. L. Olivares, I. Martin, D. Lacroix, J. Feijen, et al. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 32(11):2878-2884, 2011.
    • (2011) Biomaterials , vol.32 , Issue.11 , pp. 2878-2884
    • Melchels, F.P.W.1    Tonnarelli, B.2    Olivares, A.L.3    Martin, I.4    Lacroix, D.5    Feijen, J.6
  • 31
    • 33947545916 scopus 로고    scopus 로고
    • The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering
    • 17264409
    • O'Brien, F. J., B. A. Harley, M. A. Waller, I. Yannas, L. J. Gibson, and P. Prendergast. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol. Health Care 15(1):3-17, 2007.
    • (2007) Technol. Health Care , vol.15 , Issue.1 , pp. 3-17
    • O'Brien, F.J.1    Harley, B.A.2    Waller, M.A.3    Yannas, I.4    Gibson, L.J.5    Prendergast, P.6
  • 32
    • 58949090456 scopus 로고    scopus 로고
    • Permeability evaluation of 45S5 bioglass-based scaffolds for bone tissue engineering
    • 19105999 10.1016/j.jbiomech.2008.10.030
    • Ochoa, I., J. A. Sanz, J. M. Garcia-Aznar, M. Doblare, D. M. Yunos, and A. R. Boccaccini. Permeability evaluation of 45S5 bioglass-based scaffolds for bone tissue engineering. J. Biomech. 42:257-260, 2009.
    • (2009) J. Biomech. , vol.42 , pp. 257-260
    • Ochoa, I.1    Sanz, J.A.2    Garcia-Aznar, J.M.3    Doblare, M.4    Yunos, D.M.5    Boccaccini, A.R.6
  • 33
    • 12344284982 scopus 로고    scopus 로고
    • 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor
    • Porter, B., R. Zauel, H. Stockman, R. Guldberg, and D. Fyhrie. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. Mater. Res. 38:543-549, 2005.
    • (2005) Mater. Res. , vol.38 , pp. 543-549
    • Porter, B.1    Zauel, R.2    Stockman, H.3    Guldberg, R.4    Fyhrie, D.5
  • 34
    • 74449093597 scopus 로고    scopus 로고
    • Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach
    • 19969348 10.1016/j.biomaterials.2009.11.063 1:CAS:528: DC%2BC3cXpsV2qtA%3D%3D
    • Sandino, C., S. Checa, P. J. Prendergast, and D. Lacroix. Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials 31(8):2446-2452, 2010.
    • (2010) Biomaterials , vol.31 , Issue.8 , pp. 2446-2452
    • Sandino, C.1    Checa, S.2    Prendergast, P.J.3    Lacroix, D.4
  • 35
    • 56349136287 scopus 로고    scopus 로고
    • On scaffold designing for bone regeneration: A computational multiscale approach
    • 10.1016/j.actbio.2008.06.021
    • Sanz, J. A., J. M. García-Aznar, and M. Doblaré. On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater. 5(1):219-229, 2009.
    • (2009) Acta Biomater. , vol.5 , Issue.1 , pp. 219-229
    • Sanz, J.A.1    García-Aznar, J.M.2    Doblaré, M.3
  • 37
    • 24044513265 scopus 로고    scopus 로고
    • Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation
    • 16081181 10.1016/j.jbiotec.2005.03.021 1:CAS:528:DC%2BD2MXpslChtL0%3D
    • Singh, H., S. H. Teoh, H. T. Low, and D. W. Hutmacher. Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation. J. Biotechnol. 119:181-196, 2005.
    • (2005) J. Biotechnol. , vol.119 , pp. 181-196
    • Singh, H.1    Teoh, S.H.2    Low, H.T.3    Hutmacher, D.W.4
  • 38
    • 0002456669 scopus 로고
    • Deposition of polystyrene latex-particles toward polymethylmethacrylate in a parallel plate flow cell
    • 10.1016/0021-9797(89)90253-1 1:CAS:528:DyaK3cXht1Cnsw%3D%3D
    • Sjollema, J., and H. J. Busscher. Deposition of polystyrene latex-particles toward polymethylmethacrylate in a parallel plate flow cell. J. Colloid Interface Sci. 132(2):382-394, 1989.
    • (1989) J. Colloid Interface Sci. , vol.132 , Issue.2 , pp. 382-394
    • Sjollema, J.1    Busscher, H.J.2
  • 39
    • 84857783703 scopus 로고    scopus 로고
    • Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study
    • 22210520 10.1016/j.actbio.2011.12.021 1:CAS:528:DC%2BC38XivVyqtrs%3D
    • Truscello, S., G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, and H. Van Oosterwyck. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta Biomater. 8(4):1648-1658, 2012.
    • (2012) Acta Biomater. , vol.8 , Issue.4 , pp. 1648-1658
    • Truscello, S.1    Kerckhofs, G.2    Van Bael, S.3    Pyka, G.4    Schrooten, J.5    Van Oosterwyck, H.6
  • 40
    • 1642319363 scopus 로고    scopus 로고
    • Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique
    • 15046905 10.1016/j.biomaterials.2003.10.056 1:CAS:528: DC%2BD2cXitlWqsLc%3D
    • Woodfield, T. B., J. Malda, J. Wijn, F. Péters, J. Riesle, and C. A. van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18):4149-4161, 2004.
    • (2004) Biomaterials , vol.25 , Issue.18 , pp. 4149-4161
    • Woodfield, T.B.1    Malda, J.2    Wijn, J.3    Péters, F.4    Riesle, J.5    Van Blitterswijk, C.A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.