메뉴 건너뛰기




Volumn 66, Issue , 2014, Pages 722-731

A multilevel regression approach to understand effects of environment indicators and household features on residential energy consumption

Author keywords

Area variations; Multilevel regression; Residential energy consumption

Indexed keywords

ACOUSTIC WAVE ABSORPTION; AIR CONDITIONING; ECONOMICS; HEATING; HOUSING; REGRESSION ANALYSIS; ENERGY UTILIZATION;

EID: 84896400304     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2014.01.056     Document Type: Article
Times cited : (87)

References (58)
  • 2
    • 0035397505 scopus 로고    scopus 로고
    • Relating residential and commercial sector electricity loads to climate - evaluating state level sensitivities and vulnerabilities
    • Sailor D.J. Relating residential and commercial sector electricity loads to climate - evaluating state level sensitivities and vulnerabilities. Energy 2001, 26(7):645-657.
    • (2001) Energy , vol.26 , Issue.7 , pp. 645-657
    • Sailor, D.J.1
  • 3
    • 80655124517 scopus 로고    scopus 로고
    • Spatial interaction models for biomass consumption in the United States
    • Wang S., Wang S. Spatial interaction models for biomass consumption in the United States. Energy 2011, 36(11):6555-6558.
    • (2011) Energy , vol.36 , Issue.11 , pp. 6555-6558
    • Wang, S.1    Wang, S.2
  • 4
    • 48049123065 scopus 로고    scopus 로고
    • Estimating residential demand for electricity in the United States, 1965-2006
    • Dergiades T., Tsoulfidis L. Estimating residential demand for electricity in the United States, 1965-2006. Energy Econ 2008, 30(5):2722-2730.
    • (2008) Energy Econ , vol.30 , Issue.5 , pp. 2722-2730
    • Dergiades, T.1    Tsoulfidis, L.2
  • 5
    • 77949654081 scopus 로고    scopus 로고
    • Factors affecting electricity demand in Athens, Greece and London, UK: a comparative assessment
    • Psiloglou B.E., Giannakopoulos C., Majithia S., Petrakis M. Factors affecting electricity demand in Athens, Greece and London, UK: a comparative assessment. Energy 2009, 34(11):1855-1863.
    • (2009) Energy , vol.34 , Issue.11 , pp. 1855-1863
    • Psiloglou, B.E.1    Giannakopoulos, C.2    Majithia, S.3    Petrakis, M.4
  • 6
    • 76149085141 scopus 로고    scopus 로고
    • Evaluation of the effectiveness of an energy efficiency program for new home construction in eastern North Carolina
    • Dixon G., Abdel-Salam T., Kauffmann P. Evaluation of the effectiveness of an energy efficiency program for new home construction in eastern North Carolina. Energy 2010, 35(3):1491-1496.
    • (2010) Energy , vol.35 , Issue.3 , pp. 1491-1496
    • Dixon, G.1    Abdel-Salam, T.2    Kauffmann, P.3
  • 7
    • 84856295816 scopus 로고    scopus 로고
    • Lifestyle factors in US residential electricity consumption
    • Sanquist T.F., Orr H., Shui B., Bittner A.C. Lifestyle factors in US residential electricity consumption. Energy policy 2012, 42:354-364.
    • (2012) Energy policy , vol.42 , pp. 354-364
    • Sanquist, T.F.1    Orr, H.2    Shui, B.3    Bittner, A.C.4
  • 10
    • 10444221119 scopus 로고    scopus 로고
    • Advances in energy forecasting models based on engineering economics
    • Worrell E., Ramesohl S., Boyd G. Advances in energy forecasting models based on engineering economics. Annu Rev Environ Resour 2004, 29:345-381.
    • (2004) Annu Rev Environ Resour , vol.29 , pp. 345-381
    • Worrell, E.1    Ramesohl, S.2    Boyd, G.3
  • 11
    • 0029480609 scopus 로고
    • MERGE: a model for evaluating regional and global effects of GHG reduction policies
    • Manne A., Mendelsohn R., Richels R. MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy policy 1995, 23(1):17-34.
    • (1995) Energy policy , vol.23 , Issue.1 , pp. 17-34
    • Manne, A.1    Mendelsohn, R.2    Richels, R.3
  • 12
    • 0004152372 scopus 로고    scopus 로고
    • CPB Netherlands Bureau for Economic Policy Analysis
    • Don H. WorldScan: the core version 1999, CPB Netherlands Bureau for Economic Policy Analysis.
    • (1999) WorldScan: the core version
    • Don, H.1
  • 13
    • 70949098947 scopus 로고    scopus 로고
    • Aglobal model for residential energy use: uncertainty in calibration to regional data
    • van Ruijven B., de Vries B., van Vuuren D.P., van der Sluijs J.P. Aglobal model for residential energy use: uncertainty in calibration to regional data. Energy 2010, 35(1):269-282.
    • (2010) Energy , vol.35 , Issue.1 , pp. 269-282
    • van Ruijven, B.1    de Vries, B.2    van Vuuren, D.P.3    van der Sluijs, J.P.4
  • 14
    • 23844437554 scopus 로고    scopus 로고
    • Regional energy demand responses to climate change: methodology and application to the Commonwealth of Massachusetts
    • Amato A.D., Ruth M., Kirshen P., Horwitz J. Regional energy demand responses to climate change: methodology and application to the Commonwealth of Massachusetts. Clim Change 2005, 71(1-2):175-201.
    • (2005) Clim Change , vol.71 , Issue.1-2 , pp. 175-201
    • Amato, A.D.1    Ruth, M.2    Kirshen, P.3    Horwitz, J.4
  • 16
    • 77949542334 scopus 로고    scopus 로고
    • Impact of climate change on thermal comfort, heating and cooling energy demand in Europe
    • Conference impact of climate change on thermal comfort, heating and cooling energy demand in Europe.
    • Aebischer B, Catenazzi G, Henderson G, Jakob M. Impact of climate change on thermal comfort, heating and cooling energy demand in Europe. Conference impact of climate change on thermal comfort, heating and cooling energy demand in Europe. p. 859-870.
    • Aebischer, B.1    Catenazzi, G.2    Henderson, G.3    Jakob, M.4
  • 17
    • 17744374155 scopus 로고    scopus 로고
    • Non-linearities in electricity demand and temperature: parametric versus non-parametric methods
    • Henley A., Peirson J. Non-linearities in electricity demand and temperature: parametric versus non-parametric methods. Oxford Bull Econ Stat 1997, 59(1):149-162.
    • (1997) Oxford Bull Econ Stat , vol.59 , Issue.1 , pp. 149-162
    • Henley, A.1    Peirson, J.2
  • 18
    • 77949542203 scopus 로고    scopus 로고
    • Dynamic temperature dependence patterns in future energy demand models in the context of climate change
    • Hekkenberg M., Moll H.C., Uiterkamp A.J.M.S. Dynamic temperature dependence patterns in future energy demand models in the context of climate change. Energy 2009, 34(11):1797-1806.
    • (2009) Energy , vol.34 , Issue.11 , pp. 1797-1806
    • Hekkenberg, M.1    Moll, H.C.2    Uiterkamp, A.J.M.S.3
  • 20
    • 0033120014 scopus 로고    scopus 로고
    • Modelling of electrical energy consumption in Delhi
    • Ranjan M., Jain V.K. Modelling of electrical energy consumption in Delhi. Energy 1999, 24(4):351-361.
    • (1999) Energy , vol.24 , Issue.4 , pp. 351-361
    • Ranjan, M.1    Jain, V.K.2
  • 21
    • 68449093602 scopus 로고    scopus 로고
    • Electricity consumption forecasting in Italy using linear regression models
    • Bianco V., Manca O., Nardini S. Electricity consumption forecasting in Italy using linear regression models. Energy 2009, 34(9):1413-1421.
    • (2009) Energy , vol.34 , Issue.9 , pp. 1413-1421
    • Bianco, V.1    Manca, O.2    Nardini, S.3
  • 22
    • 77957773774 scopus 로고    scopus 로고
    • Understanding the spectrum of residential energy consumption: a quantile regression approach
    • Kaza N. Understanding the spectrum of residential energy consumption: a quantile regression approach. Energy Policy 2010, 38(11):6574-6585.
    • (2010) Energy Policy , vol.38 , Issue.11 , pp. 6574-6585
    • Kaza, N.1
  • 24
    • 38749131178 scopus 로고    scopus 로고
    • Seasonal variations in residential and commercial sector electricity consumption in Hong Kong
    • Lam C., Tang H.L., Li D.H.W. Seasonal variations in residential and commercial sector electricity consumption in Hong Kong. Energy 2008, 33(3):513-523.
    • (2008) Energy , vol.33 , Issue.3 , pp. 513-523
    • Lam, C.1    Tang, H.L.2    Li, D.H.W.3
  • 25
    • 0030286579 scopus 로고    scopus 로고
    • Neural network based short-term load forecasting using weather compensation
    • Chow T., Leung C. Neural network based short-term load forecasting using weather compensation. IEEE Trans Power Syst 1996, 11(4):1736-1742.
    • (1996) IEEE Trans Power Syst , vol.11 , Issue.4 , pp. 1736-1742
    • Chow, T.1    Leung, C.2
  • 26
    • 0029769871 scopus 로고    scopus 로고
    • Fuzzy neural network and fuzzy expert system for load forecasting
    • Dash P., Liew A., Rahman S. Fuzzy neural network and fuzzy expert system for load forecasting. IEE Proc Gener Transm Distrib 1996, 143(1):106-114.
    • (1996) IEE Proc Gener Transm Distrib , vol.143 , Issue.1 , pp. 106-114
    • Dash, P.1    Liew, A.2    Rahman, S.3
  • 27
    • 0029332890 scopus 로고
    • Forecasting monthly electric load and energy for a fast growing utility using an artificial neural network
    • Islam S.M., Al-Alawi S.M., Ellithy K.A. Forecasting monthly electric load and energy for a fast growing utility using an artificial neural network. Electr Power Syst Res 1995, 34(1):1-9.
    • (1995) Electr Power Syst Res , vol.34 , Issue.1 , pp. 1-9
    • Islam, S.M.1    Al-Alawi, S.M.2    Ellithy, K.A.3
  • 28
    • 0030149443 scopus 로고    scopus 로고
    • An artificial neural network hourly temperature forecaster with applications in load forecasting
    • Khotanzad A., Davis M.H., Abaye A., Maratukulam D.J. An artificial neural network hourly temperature forecaster with applications in load forecasting. IEEE Trans Power Syst 1996, 11(2):870-876.
    • (1996) IEEE Trans Power Syst , vol.11 , Issue.2 , pp. 870-876
    • Khotanzad, A.1    Davis, M.H.2    Abaye, A.3    Maratukulam, D.J.4
  • 29
    • 64349099110 scopus 로고    scopus 로고
    • Ecological correlations and the behavior of individuals
    • Robinson W.S. Ecological correlations and the behavior of individuals. Int J Epidemiol 2009, 38(2):337-341.
    • (2009) Int J Epidemiol , vol.38 , Issue.2 , pp. 337-341
    • Robinson, W.S.1
  • 30
    • 67650761091 scopus 로고    scopus 로고
    • Modeling of end-use energy consumption in the residential sector: a review of modeling techniques
    • Swan L.G., Ugursal V.I. Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew Sustain Energy Rev 2009, 13(8):1819-1835.
    • (2009) Renew Sustain Energy Rev , vol.13 , Issue.8 , pp. 1819-1835
    • Swan, L.G.1    Ugursal, V.I.2
  • 35
    • 65649106924 scopus 로고    scopus 로고
    • Multilevel regression mixture analysis
    • Muthén B., Asparouhov T. Multilevel regression mixture analysis. JR Stat Soc Ser A Stat Soc 2009, 172(3):639-657.
    • (2009) JR Stat Soc Ser A Stat Soc , vol.172 , Issue.3 , pp. 639-657
    • Muthén, B.1    Asparouhov, T.2
  • 36
    • 0002428888 scopus 로고
    • Random coefficient models for multilevel analysis
    • De Leeuw J., Kreft I. Random coefficient models for multilevel analysis. JEduc Behav Stat 1986, 11(1):57-85.
    • (1986) JEduc Behav Stat , vol.11 , Issue.1 , pp. 57-85
    • De Leeuw, J.1    Kreft, I.2
  • 38
    • 77956887650 scopus 로고
    • Afast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects
    • Longford N.T. Afast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika 1987, 74(4):817-827.
    • (1987) Biometrika , vol.74 , Issue.4 , pp. 817-827
    • Longford, N.T.1
  • 39
    • 84936526615 scopus 로고
    • Ahierarchical model for studying school effects
    • Raudenbush S., Bryk A.S. Ahierarchical model for studying school effects. Sociol Educ 1986, 1-17.
    • (1986) Sociol Educ , pp. 1-17
    • Raudenbush, S.1    Bryk, A.S.2
  • 40
    • 84970751690 scopus 로고
    • Methodological advances in analyzing the effects of schools and classrooms on student learning
    • Raudenbush S.W., Bryk A.S. Methodological advances in analyzing the effects of schools and classrooms on student learning. Rev Res Educ 1988, 15:423-475.
    • (1988) Rev Res Educ , vol.15 , pp. 423-475
    • Raudenbush, S.W.1    Bryk, A.S.2
  • 43
    • 0032251946 scopus 로고    scopus 로고
    • Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models
    • Singer J.D. Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. JEduc Behav Stat 1998, 23(4):323-355.
    • (1998) JEduc Behav Stat , vol.23 , Issue.4 , pp. 323-355
    • Singer, J.D.1
  • 44
    • 13544261627 scopus 로고    scopus 로고
    • Abrief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon
    • Merlo J., Chaix B., Yang M., Lynch J., Råstam L. Abrief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon. JEpidemiol Commun Health 2005, 59(6):443-449.
    • (2005) JEpidemiol Commun Health , vol.59 , Issue.6 , pp. 443-449
    • Merlo, J.1    Chaix, B.2    Yang, M.3    Lynch, J.4    Råstam, L.5
  • 46
    • 84896399620 scopus 로고    scopus 로고
    • Energy Inforamtion Administration
    • Energy Inforamtion Administration About the RECS 2013, http://www.eia.gov/consumption/residential/about.cfm.
    • (2013) About the RECS
  • 48
    • 33644811323 scopus 로고    scopus 로고
    • Weighted estimation in multilevel ordinal and binary models in the presence of informative sampling designs
    • Grilli L., Pratesi M. Weighted estimation in multilevel ordinal and binary models in the presence of informative sampling designs. Survey Methodol 2004, 30:93-103.
    • (2004) Survey Methodol , vol.30 , pp. 93-103
    • Grilli, L.1    Pratesi, M.2
  • 49
    • 68749114151 scopus 로고    scopus 로고
    • Fitting multilevel models in complex survey data with design weights: recommendations
    • Carle A.C. Fitting multilevel models in complex survey data with design weights: recommendations. BMC Med Res Methodol 2009, 9(1):49.
    • (2009) BMC Med Res Methodol , vol.9 , Issue.1 , pp. 49
    • Carle, A.C.1
  • 50
    • 33644796073 scopus 로고    scopus 로고
    • General multi-level modeling with sampling weights
    • Asparouhov T. General multi-level modeling with sampling weights. Commun Stat Theory Methods 2006, 35(3):439-460.
    • (2006) Commun Stat Theory Methods , vol.35 , Issue.3 , pp. 439-460
    • Asparouhov, T.1
  • 52
    • 0016355478 scopus 로고
    • Anew look at the statistical model identification
    • Akaike H. Anew look at the statistical model identification. IEEE Trans Automat Contr 1974, 19(6):716-723.
    • (1974) IEEE Trans Automat Contr , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 53
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Stat 1978, 6(2):461-464.
    • (1978) Ann Stat , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 55
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions
    • Bozdogan H. Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika 1987, 52(3):345-370.
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 345-370
    • Bozdogan, H.1
  • 56
    • 0001201909 scopus 로고
    • Bayesian model selection in social research
    • Raftery A.E. Bayesian model selection in social research. Sociol Methodol 1995, 25:111-164.
    • (1995) Sociol Methodol , vol.25 , pp. 111-164
    • Raftery, A.E.1
  • 57
    • 46649107128 scopus 로고    scopus 로고
    • The impact of urban form on US residential energy use
    • Ewing R., Rong F. The impact of urban form on US residential energy use. Hous Policy Debate 2008, 19(1):1-30.
    • (2008) Hous Policy Debate , vol.19 , Issue.1 , pp. 1-30
    • Ewing, R.1    Rong, F.2
  • 58
    • 85069288011 scopus 로고    scopus 로고
    • Multilevel analysis
    • Elsevier, New York, K. Kempf-Leonard (Ed.)
    • Hox J.J., Maas C.J.M. Multilevel analysis. Encyclopedia of social measurement 2005, 785-793. Elsevier, New York. K. Kempf-Leonard (Ed.).
    • (2005) Encyclopedia of social measurement , pp. 785-793
    • Hox, J.J.1    Maas, C.J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.