메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2444-2450

Action-model acquisition from noisy plan traces

Author keywords

[No Author keywords available]

Indexed keywords

ACTION MODELS; GRAPHICAL MODEL; LARGE AMOUNTS; LEARNING APPROACH; PLANNING COMMUNITY; PLANNING DOMAINS; REAL WORLD DOMAIN; TRAINING DATA;

EID: 84896060986     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (65)

References (22)
  • 1
    • 84880732671 scopus 로고    scopus 로고
    • Learning partially observable deterministic action models
    • E. Amir. Learning partially observable deterministic action models. In Proceedings of IJCAI-05, pages 1433-1439, 2005.
    • (2005) Proceedings of IJCAI-05 , pp. 1433-1439
    • Amir, E.1
  • 2
    • 74449092659 scopus 로고    scopus 로고
    • Automated composition of web services via planning in asynchronous domains
    • Piergiorgio Bertoli, Marco Pistore, and Paolo Traverso. Automated composition of web services via planning in asynchronous domains. Artificial Intelligence Journal, 174(3-4):316-361, 2010.
    • (2010) Artificial Intelligence Journal , vol.174 , Issue.3-4 , pp. 316-361
    • Bertoli, P.1    Pistore, M.2    Traverso, P.3
  • 3
    • 4344593855 scopus 로고    scopus 로고
    • Automatically composed workflows for grid environments
    • J. Blythe, E. Deelman, and Y. Gil. Automatically composed workflows for grid environments. IEEE Intelligent Systems, 19(4):16-23, 2004.
    • (2004) IEEE Intelligent Systems , vol.19 , Issue.4 , pp. 16-23
    • Blythe, J.1    Deelman, E.2    Gil, Y.3
  • 5
    • 84880781178 scopus 로고    scopus 로고
    • A general model for online probabilistic plan recognition
    • Hung H. Bui. A general model for online probabilistic plan recognition. In Proceedings of IJCAI-03, 2003.
    • (2003) Proceedings of IJCAI-03
    • Bui, H.H.1
  • 6
    • 2842560201 scopus 로고
    • STRIPS: A new approach to the application of theorem proving to problem solving
    • R. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence Journal, pages 189-208, 1971.
    • (1971) Artificial Intelligence Journal , pp. 189-208
    • Fikes, R.1    Nilsson, N.J.2
  • 7
    • 85148686343 scopus 로고
    • Learning by experimentation: Incremental refinement of incomplete planning domains
    • Yolanda Gil. Learning by experimentation: Incremental refinement of incomplete planning domains. In Proceedings of ICML-94, pages 87-95, 1994.
    • (1994) Proceedings of ICML-94 , pp. 87-95
    • Gil, Y.1
  • 8
    • 36348947439 scopus 로고    scopus 로고
    • Web service composition as planning, revisited: In between background theoriesandinitial state uncertainty
    • Jrg Hoffmann, Piergiorgio Bertoli, and Marco Pistore. Web service composition as planning, revisited: In between background theoriesandinitial state uncertainty. In Proceedings of AAAI-07, 2007.
    • (2007) Proceedings of AAAI-07
    • Hoffmann, J.1    Bertoli, P.2    Pistore, M.3
  • 10
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML-01, pages 282-289, 2001.
    • (2001) Proceedings of ICML-01 , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 16
    • 77958537867 scopus 로고    scopus 로고
    • Probabilistic plan recognition using off-the-shelf classical planners
    • Miquel Ramirez and Hector Geffner. Probabilistic plan recognition using off-the-shelf classical planners. In Proceedings of AAAI-10, 2010.
    • (2010) Proceedings of AAAI-10
    • Ramirez, M.1    Geffner, H.2
  • 17
    • 84898939480 scopus 로고    scopus 로고
    • Policy gradient methods for reinforcement learning with function approximation
    • Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In Proceedings of NIPS-00, page 10571063, 2000.
    • (2000) Proceedings of NIPS-00 , pp. 10571063
    • Sutton, R.S.1    McAllester, D.2    Singh, S.3    Mansour, Y.4
  • 18
    • 33847340622 scopus 로고    scopus 로고
    • Learning action models from plan examples using weighted MAX-SAT
    • February
    • Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan examples using weighted MAX-SAT. Artificial Intelligence, 171:107-143, February 2007.
    • (2007) Artificial Intelligence , vol.171 , pp. 107-143
    • Yang, Q.1    Wu, K.2    Jiang, Y.3
  • 20
    • 78049307952 scopus 로고    scopus 로고
    • Learning complex action models with quantifiers and implications
    • Hankz Hankui Zhuo, Qiang Yang, Derek Hao Hu, and Lei Li. Learning complex action models with quantifiers and implications. Artificial Intelligence, 174(18):1540-1569, 2010.
    • (2010) Artificial Intelligence , vol.174 , Issue.18 , pp. 1540-1569
    • Zhuo, H.H.1    Yang, Q.2    Hu, D.H.3    Li, L.4
  • 21
    • 80054834578 scopus 로고    scopus 로고
    • Cross-domain action-model acquisition for planning via web search
    • Hankz Hankui Zhuo, Qiang Yang, Rong Pan, and Lei Li. Cross-domain action-model acquisition for planning via web search. In Proceedings of ICAPS-11, pages 298-305, 2011.
    • (2011) Proceedings of ICAPS-11 , pp. 298-305
    • Zhuo, H.H.1    Yang, Q.2    Pan, R.3    Li, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.