메뉴 건너뛰기




Volumn , Issue , 2011, Pages 298-305

Cross-domain action-model acquisition for planning via web search

Author keywords

[No Author keywords available]

Indexed keywords

ACTION MODELS; CROSS-DOMAIN; HIGH QUALITY; INTERNATIONAL PLANNING COMPETITIONS; LEARNING TASKS; LEARNING TECHNIQUES; LIMITED TRAINING DATA; MAX-SAT; MAXIMUM SATISFIABILITY PROBLEMS; PLANNING DOMAINS; TARGET DOMAIN; TRAINING DATA; WEB SEARCHES; WEB-SEARCHING;

EID: 80054834578     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (18)

References (23)
  • 1
    • 84880732671 scopus 로고    scopus 로고
    • Learning partially observable deterministic action models
    • Amir, E. 2005. Learning partially observable deterministic action models. In Proceedings of IJCAI, 1433-1439.
    • (2005) Proceedings of IJCAI , pp. 1433-1439
    • Amir, E.1
  • 3
    • 77954630948 scopus 로고    scopus 로고
    • Measuring the similarity between implicit semantic relations from the web
    • Bollegala, D.; Matsuo, Y.; and Ishizuka, M. 2009. Measuring the similarity between implicit semantic relations from the web. In Proceedings of WWW.
    • (2009) Proceedings of WWW
    • Bollegala, D.1    Matsuo, Y.2    Ishizuka, M.3
  • 4
    • 0007980271 scopus 로고    scopus 로고
    • A Two-Phase Exact Algorithm for MAX-SAT and Weighted MAX-SAT Problems
    • Borchers, B., and Furman, J. 1998. A two-phase exact algorithm for max-sat and weighted max-sat problems. Journal of Combinatorial Optimization 2(4):299-306. (Pubitemid 129644219)
    • (1998) Journal of Combinatorial Optimization , vol.2 , Issue.4 , pp. 299-306
    • Borchers, B.1    Furman, J.2
  • 6
    • 0031189914 scopus 로고    scopus 로고
    • Multitask Learning
    • Caruana, R. 1997. Multitask learning. Machine Learning 28(1):41-75. (Pubitemid 127507169)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 8
    • 2842560201 scopus 로고
    • STRIPS: A new approach to the application of theorem proving to problem solving
    • Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence Journal 189-208.
    • (1971) Artificial Intelligence Journal , pp. 189-208
    • Fikes, R.1    Nilsson, N.J.2
  • 9
    • 27444434099 scopus 로고    scopus 로고
    • PDDL2.1: An extension to PDDL for expressing temporal planning domains
    • Fox, M., and Long, D. 2003. Pddl2.1: An extension to pddl for expressing temporal planning domains. Journal of Artificial Intelligence Research (JAIR) 20:61-124. (Pubitemid 41530519)
    • (2003) Journal of Artificial Intelligence Research , vol.20 , pp. 61-124
    • Fox, M.1    Long, D.2
  • 10
    • 84953744816 scopus 로고
    • A statistical interpretation of term specificity and its application in retrieval
    • Jones, K. S. 1972. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28:11-21.
    • (1972) Journal of Documentation , vol.28 , pp. 11-21
    • Jones, K.S.1
  • 14
    • 25144484030 scopus 로고    scopus 로고
    • GIPO II: HTN planning in a tool-supported knowledge engineering environment
    • McCluskey, T. L.; Liu, D.; and Simpson, R. M. 2003. GIPO II: HTN planning in a tool-supported knowledge engineering environment. In Proceedings of ICAPS, 92-101.
    • (2003) Proceedings of ICAPS , pp. 92-101
    • McCluskey, T.L.1    Liu, D.2    Simpson, R.M.3
  • 17
    • 32044466073 scopus 로고    scopus 로고
    • Markov logic networks
    • DOI 10.1007/s10994-006-5833-1
    • Richardson, M., and Domingos, P. 2006. Markov logic networks. Machine Learning 1-2(62):107-136. (Pubitemid 43202307)
    • (2006) Machine Learning , vol.62 , Issue.1-2 SPEC. ISS. , pp. 107-136
    • Richardson, M.1    Domingos, P.2
  • 18
    • 33847340622 scopus 로고    scopus 로고
    • Learning action models from plan examples using weighted MAX-SAT
    • DOI 10.1016/j.artint.2006.11.005, PII S0004370206001408
    • Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action models from plan examples using weighted MAX-SAT. Artificial Intelligence Journal 171:107-143. (Pubitemid 46343538)
    • (2007) Artificial Intelligence , vol.171 , Issue.2-3 , pp. 107-143
    • Yang, Q.1    Wu, K.2    Jiang, Y.3
  • 21
    • 78751688349 scopus 로고    scopus 로고
    • Learning htn method preconditions and action models from partial observations
    • Zhuo, H. H.; Hu, D. H.; Hogg, C.; Yang, Q.; and Munoz-Avila, H. 2009. Learning htn method preconditions and action models from partial observations. In Proceedings of IJCAl, 1804-1810.
    • (2009) Proceedings of IJCAl , pp. 1804-1810
    • Zhuo, H.H.1    Hu, D.H.2    Hogg, C.3    Yang, Q.4    Munoz-Avila, H.5
  • 22
    • 78049307952 scopus 로고    scopus 로고
    • Learning complex action models with quantifiers and logical implications
    • Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning complex action models with quantifiers and logical implications. Artificial Intelligence 174(18):1540-1569.
    • (2010) Artificial Intelligence , vol.174 , Issue.18 , pp. 1540-1569
    • Zhuo, H.H.1    Yang, Q.2    Hu, D.H.3    Li, L.4
  • 23
    • 80054841075 scopus 로고    scopus 로고
    • Transfer learning action models by measuring the similarity of different domains
    • Zhuo, H.; Yang, Q.; and Li, L. 2009. Transfer learning action models by measuring the similarity of different domains. In Proceedings of PAKDD.
    • (2009) Proceedings of PAKDD
    • Zhuo, H.1    Yang, Q.2    Li, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.