-
2
-
-
84870714194
-
Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies
-
Yuan A., Wu J., Tang X., Zhao L., Xu F., Hu Y. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. JPharm Sci 2013, 102:6-28.
-
(2013)
JPharm Sci
, vol.102
, pp. 6-28
-
-
Yuan, A.1
Wu, J.2
Tang, X.3
Zhao, L.4
Xu, F.5
Hu, Y.6
-
3
-
-
16244383546
-
Mechanisms in photodynamic therapy: part one - photosensitizers, photochemistry and cellular localization
-
Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: part one - photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn 2004, 1:279-293.
-
(2004)
Photodiagn Photodyn
, vol.1
, pp. 279-293
-
-
Castano, A.P.1
Demidova, T.N.2
Hamblin, M.R.3
-
4
-
-
0035318612
-
Aclearer vision for invivo imaging
-
Weissleder R. Aclearer vision for invivo imaging. Nat Biotechnol 2001, 19:316-317.
-
(2001)
Nat Biotechnol
, vol.19
, pp. 316-317
-
-
Weissleder, R.1
-
5
-
-
0036838398
-
Photosensitized singlet oxygen and its applications
-
DeRosa M.C., Crutchley R.J. Photosensitized singlet oxygen and its applications. Coord Chem Rev 2002, 233-234:351-371.
-
(2002)
Coord Chem Rev
, pp. 351-371
-
-
DeRosa, M.C.1
Crutchley, R.J.2
-
6
-
-
49449105371
-
Highly efficient drug delivery with gold nanoparticle vectors for invivo photodynamic therapy of cancer
-
Cheng Y., C Samia A., Meyers J.D., Panagopoulos I., Fei B., Burda C. Highly efficient drug delivery with gold nanoparticle vectors for invivo photodynamic therapy of cancer. JAm Chem Soc 2008, 130:10643-10647.
-
(2008)
JAm Chem Soc
, vol.130
, pp. 10643-10647
-
-
Cheng, Y.1
Samia, A.C.2
Meyers, J.D.3
Panagopoulos, I.4
Fei, B.5
Burda, C.6
-
7
-
-
1942486331
-
Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs
-
Lukyanov A.N., Torchilin V.P. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 2004, 56:1273-1289.
-
(2004)
Adv Drug Deliv Rev
, vol.56
, pp. 1273-1289
-
-
Lukyanov, A.N.1
Torchilin, V.P.2
-
8
-
-
84861586236
-
Multifunctionalized mesoporous silica nanoparticles for the invitro treatment of retinoblastoma: drug delivery, one and two-photon photodynamic therapy
-
Gary-Bobo M., Mir Y., Rouxel C., Brevet D., Hocine O., Maynadier M., et al. Multifunctionalized mesoporous silica nanoparticles for the invitro treatment of retinoblastoma: drug delivery, one and two-photon photodynamic therapy. Int J Pharm 2012, 432:99-104.
-
(2012)
Int J Pharm
, vol.432
, pp. 99-104
-
-
Gary-Bobo, M.1
Mir, Y.2
Rouxel, C.3
Brevet, D.4
Hocine, O.5
Maynadier, M.6
-
9
-
-
84866505599
-
Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy
-
Huang P., Lin J., Wang X., Wang Z., Zhang C., He M., et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater 2012, 24:5104-5110.
-
(2012)
Adv Mater
, vol.24
, pp. 5104-5110
-
-
Huang, P.1
Lin, J.2
Wang, X.3
Wang, Z.4
Zhang, C.5
He, M.6
-
10
-
-
80051502248
-
Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells
-
Xiao L., Gu L., Howell S.B., Sailor M.J. Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 2011, 5:3651-3659.
-
(2011)
ACS Nano
, vol.5
, pp. 3651-3659
-
-
Xiao, L.1
Gu, L.2
Howell, S.B.3
Sailor, M.J.4
-
11
-
-
84881023430
-
Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy
-
Peng J., Zhao L., Zhu X., Sun Y., Feng W., Gao Y., et al. Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. Biomaterials 2013, 34:7905-7912.
-
(2013)
Biomaterials
, vol.34
, pp. 7905-7912
-
-
Peng, J.1
Zhao, L.2
Zhu, X.3
Sun, Y.4
Feng, W.5
Gao, Y.6
-
12
-
-
84866715410
-
Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy invitro
-
Gao L., Fei J., Zhao J., Li H., Cui Y., Li J. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy invitro. ACS Nano 2012, 6:8030-8040.
-
(2012)
ACS Nano
, vol.6
, pp. 8030-8040
-
-
Gao, L.1
Fei, J.2
Zhao, J.3
Li, H.4
Cui, Y.5
Li, J.6
-
13
-
-
79951879265
-
Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy invivo
-
Jang B., Park J.-Y., Tung C.-H., Kim I.-H., Choi Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy invivo. ACS Nano 2011, 5:1086-1094.
-
(2011)
ACS Nano
, vol.5
, pp. 1086-1094
-
-
Jang, B.1
Park, J.-Y.2
Tung, C.-H.3
Kim, I.-H.4
Choi, Y.5
-
14
-
-
80053315535
-
Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis
-
Khlebtsov B., Panfilova E., Khanadeev V., Bibikova O., Terentyuk G., Ivanov A., et al. Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano 2011, 5:7077-7089.
-
(2011)
ACS Nano
, vol.5
, pp. 7077-7089
-
-
Khlebtsov, B.1
Panfilova, E.2
Khanadeev, V.3
Bibikova, O.4
Terentyuk, G.5
Ivanov, A.6
-
15
-
-
80054038741
-
Graphene oxide noncovalent photosensitizer and its anticancer activity invitro
-
Zhou L., Wang W., Tang J., Zhou J.-H., Jiang H.-J., Shen J. Graphene oxide noncovalent photosensitizer and its anticancer activity invitro. Chem Eur J 2011, 17:12084-12091.
-
(2011)
Chem Eur J
, vol.17
, pp. 12084-12091
-
-
Zhou, L.1
Wang, W.2
Tang, J.3
Zhou, J.-H.4
Jiang, H.-J.5
Shen, J.6
-
16
-
-
80053316272
-
Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide
-
Tian B., Wang C., Zhang S., Feng L., Liu Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011, 5:7000-7009.
-
(2011)
ACS Nano
, vol.5
, pp. 7000-7009
-
-
Tian, B.1
Wang, C.2
Zhang, S.3
Feng, L.4
Liu, Z.5
-
17
-
-
80052563472
-
Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy
-
Huang P., Xu C., Lin J., Wang C., Wang X., Zhang C., et al. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 2011, 1:240-250.
-
(2011)
Theranostics
, vol.1
, pp. 240-250
-
-
Huang, P.1
Xu, C.2
Lin, J.3
Wang, C.4
Wang, X.5
Zhang, C.6
-
18
-
-
84878839404
-
Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars
-
Wang S., Huang P., Nie L., Xing R., Liu D., Wang Z., et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv Mater 2013, 25:3055-3061.
-
(2013)
Adv Mater
, vol.25
, pp. 3055-3061
-
-
Wang, S.1
Huang, P.2
Nie, L.3
Xing, R.4
Liu, D.5
Wang, Z.6
-
19
-
-
67649225738
-
Graphene: status and prospects
-
Geim A.K. Graphene: status and prospects. Science 2009, 324:1530-1534.
-
(2009)
Science
, vol.324
, pp. 1530-1534
-
-
Geim, A.K.1
-
20
-
-
77956963862
-
Graphene and graphene oxide: synthesis, properties, and applications
-
Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 2010, 22:3906-3924.
-
(2010)
Adv Mater
, vol.22
, pp. 3906-3924
-
-
Zhu, Y.1
Murali, S.2
Cai, W.3
Li, X.4
Suk, J.W.5
Potts, J.R.6
-
21
-
-
77949880674
-
The chemistry of graphene oxide
-
Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem Soc Rev 2010, 39:228-240.
-
(2010)
Chem Soc Rev
, vol.39
, pp. 228-240
-
-
Dreyer, D.R.1
Park, S.2
Bielawski, C.W.3
Ruoff, R.S.4
-
22
-
-
79952696075
-
Biocompatibility of graphene oxide
-
Wang K., Ruan J., Song H., Zhang J., Wo Y., Guo S., et al. Biocompatibility of graphene oxide. Nanoscale Res Lett 2011, 6:8.
-
(2011)
Nanoscale Res Lett
, vol.6
, pp. 8
-
-
Wang, K.1
Ruan, J.2
Song, H.3
Zhang, J.4
Wo, Y.5
Guo, S.6
-
23
-
-
84881597517
-
Nano-graphene oxide: a potential multifunctional platform for cancer therapy
-
Gonçalves G., Vila M., Portolés M.-T., Vallet-Regi M., Gracio J., Marques P.A.A.P. Nano-graphene oxide: a potential multifunctional platform for cancer therapy. Adv Health Mater 2013, 2:1072-1090.
-
(2013)
Adv Health Mater
, vol.2
, pp. 1072-1090
-
-
Gonçalves, G.1
Vila, M.2
Portolés, M.-T.3
Vallet-Regi, M.4
Gracio, J.5
Marques, P.A.A.P.6
-
24
-
-
84877626083
-
Graphene: promises, facts, opportunities, and challenges in nanomedicine
-
Mao H.Y., Laurent S., Chen W., Akhavan O., Imani M., Ashkarran A.A., et al. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev 2013, 113:3407-3424.
-
(2013)
Chem Rev
, vol.113
, pp. 3407-3424
-
-
Mao, H.Y.1
Laurent, S.2
Chen, W.3
Akhavan, O.4
Imani, M.5
Ashkarran, A.A.6
-
25
-
-
79955391283
-
Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy
-
Robinson J.T., Tabakman S.M., Liang Y., Wang H., Sanchez Casalongue H., Vinh D., et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. JAm Chem Soc 2011, 133:6825-6831.
-
(2011)
JAm Chem Soc
, vol.133
, pp. 6825-6831
-
-
Robinson, J.T.1
Tabakman, S.M.2
Liang, Y.3
Wang, H.4
Sanchez Casalongue, H.5
Vinh, D.6
-
26
-
-
84874422553
-
Graphene-based photothermal agent for rapid and effective killing of bacteria
-
Wu M.-C., Deokar A.R., Liao J.-H., Shih P.-Y., Ling Y.-C. Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 2013, 7:1281-1290.
-
(2013)
ACS Nano
, vol.7
, pp. 1281-1290
-
-
Wu, M.-C.1
Deokar, A.R.2
Liao, J.-H.3
Shih, P.-Y.4
Ling, Y.-C.5
-
27
-
-
84855858425
-
Multi-functional graphene as an invitro and invivo imaging probe
-
Gollavelli G., Ling Y.-C. Multi-functional graphene as an invitro and invivo imaging probe. Biomaterials 2012, 33:2532-2545.
-
(2012)
Biomaterials
, vol.33
, pp. 2532-2545
-
-
Gollavelli, G.1
Ling, Y.-C.2
-
28
-
-
79952578010
-
Invivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice
-
Yang K., Wan J., Zhang S., Zhang Y., Lee S.-T., Liu Z. Invivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 2011, 5:516-522.
-
(2011)
ACS Nano
, vol.5
, pp. 516-522
-
-
Yang, K.1
Wan, J.2
Zhang, S.3
Zhang, Y.4
Lee, S.-T.5
Liu, Z.6
-
29
-
-
77956455985
-
Graphene in mice: ultrahigh invivo tumor uptake and efficient photothermal therapy
-
Yang K., Zhang S., Zhang G., Sun X., Lee S.-T., Liu Z. Graphene in mice: ultrahigh invivo tumor uptake and efficient photothermal therapy. Nano Lett 2010, 10:3318-3323.
-
(2010)
Nano Lett
, vol.10
, pp. 3318-3323
-
-
Yang, K.1
Zhang, S.2
Zhang, G.3
Sun, X.4
Lee, S.-T.5
Liu, Z.6
-
30
-
-
84867534271
-
Nontoxic concentrations of PEGylated graphene nanoribbons for selective cancer cell imaging and photothermal therapy
-
Akhavan O., Ghaderi E., Emamy H. Nontoxic concentrations of PEGylated graphene nanoribbons for selective cancer cell imaging and photothermal therapy. JMater Chem 2012, 22:20626-20633.
-
(2012)
JMater Chem
, vol.22
, pp. 20626-20633
-
-
Akhavan, O.1
Ghaderi, E.2
Emamy, H.3
-
31
-
-
84890457865
-
Invivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles
-
Zhang Y.Z.B., Liu F., Luo J., Bai J. Invivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. Int J Nanomed 2014, 9:33-41.
-
(2014)
Int J Nanomed
, vol.9
, pp. 33-41
-
-
Zhang, Y.Z.B.1
Liu, F.2
Luo, J.3
Bai, J.4
-
32
-
-
84877056423
-
Rattle-structured multifunctional nanotheranostics for synergetic chemo/radiotherapy and simultaneous magnetic/luminescent dual-modal imaging
-
Fan W., Shen B., Bu W., Chen F., Zhao K., Zhang S., et al. Rattle-structured multifunctional nanotheranostics for synergetic chemo/radiotherapy and simultaneous magnetic/luminescent dual-modal imaging. JAm Chem Soc 2013, 135:6494-6503.
-
(2013)
JAm Chem Soc
, vol.135
, pp. 6494-6503
-
-
Fan, W.1
Shen, B.2
Bu, W.3
Chen, F.4
Zhao, K.5
Zhang, S.6
-
33
-
-
84859589244
-
Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles
-
Yang K., Hu L., Ma X., Ye S., Cheng L., Shi X., et al. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 2012, 24:1868-1872.
-
(2012)
Adv Mater
, vol.24
, pp. 1868-1872
-
-
Yang, K.1
Hu, L.2
Ma, X.3
Ye, S.4
Cheng, L.5
Shi, X.6
-
34
-
-
84879605060
-
EGRF conjugated PEGylated nanographene oxide for targeted chemotherapy and photothermal therapy
-
Yang H.-W., Lu Y.-J., Lin K.-J., Hsu S.-C., Huang C.-Y., She S.-H., et al. EGRF conjugated PEGylated nanographene oxide for targeted chemotherapy and photothermal therapy. Biomaterials 2013, 34:7204-7214.
-
(2013)
Biomaterials
, vol.34
, pp. 7204-7214
-
-
Yang, H.-W.1
Lu, Y.-J.2
Lin, K.-J.3
Hsu, S.-C.4
Huang, C.-Y.5
She, S.-H.6
-
35
-
-
84880928816
-
Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy
-
Wang Y., Wang H., Liu D., Song S., Wang X., Zhang H. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials 2013, 34:7715-7724.
-
(2013)
Biomaterials
, vol.34
, pp. 7715-7724
-
-
Wang, Y.1
Wang, H.2
Liu, D.3
Song, S.4
Wang, X.5
Zhang, H.6
-
37
-
-
53849085330
-
Nano-graphene oxide for cellular imaging and drug delivery
-
Sun X., Liu Z., Welsher K., Robinson J., Goodwin A., Zaric S., et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 2008, 1:203-212.
-
(2008)
Nano Res
, vol.1
, pp. 203-212
-
-
Sun, X.1
Liu, Z.2
Welsher, K.3
Robinson, J.4
Goodwin, A.5
Zaric, S.6
-
38
-
-
0025637784
-
Liposome-delivered Si (IV) naphthalocyanine as a photodynamic sensitizer for experimental tumors pharmacokinetic and phototherapeutic studies
-
Cuomo V., Jori G., Rihter B., Kenney M.E., Rodgers M.A.J. Liposome-delivered Si (IV) naphthalocyanine as a photodynamic sensitizer for experimental tumors pharmacokinetic and phototherapeutic studies. Br J Cancer 1990, 62:966-970.
-
(1990)
Br J Cancer
, vol.62
, pp. 966-970
-
-
Cuomo, V.1
Jori, G.2
Rihter, B.3
Kenney, M.E.4
Rodgers, M.A.J.5
-
39
-
-
76749130780
-
Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications
-
Cong H.P., He J.J., Lu Y., Yu S.H. Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small 2010, 6:169-173.
-
(2010)
Small
, vol.6
, pp. 169-173
-
-
Cong, H.P.1
He, J.J.2
Lu, Y.3
Yu, S.H.4
-
40
-
-
50249133647
-
Regulation of singlet oxygen generation using single-walled carbon nanotubes
-
Zhu Z., Tang Z., Phillips J.A., Yang R., Wang H., Tan W. Regulation of singlet oxygen generation using single-walled carbon nanotubes. JAm Chem Soc 2008, 130:10856-10857.
-
(2008)
JAm Chem Soc
, vol.130
, pp. 10856-10857
-
-
Zhu, Z.1
Tang, Z.2
Phillips, J.A.3
Yang, R.4
Wang, H.5
Tan, W.6
-
41
-
-
83555161636
-
Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and cypridina luciferin analogues
-
Bancirova M. Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and cypridina luciferin analogues. Luminescence 2011, 26:685-688.
-
(2011)
Luminescence
, vol.26
, pp. 685-688
-
-
Bancirova, M.1
-
42
-
-
0032425209
-
Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense
-
Jennings D.B., Ehrenshaft M., Pharr D.M., Williamson J.D. Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc Natl Acad Sci U S A 1998, 95:15129-15133.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 15129-15133
-
-
Jennings, D.B.1
Ehrenshaft, M.2
Pharr, D.M.3
Williamson, J.D.4
-
43
-
-
84872354545
-
Agraphene oxide-photosensitizer complex as an enzyme-activatable theranostic agent
-
Cho Y., Kim H., Choi Y. Agraphene oxide-photosensitizer complex as an enzyme-activatable theranostic agent. Chem Commun 2013, 49:1202-1204.
-
(2013)
Chem Commun
, vol.49
, pp. 1202-1204
-
-
Cho, Y.1
Kim, H.2
Choi, Y.3
-
44
-
-
55549098145
-
Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces
-
Horiguchi Y., Honda K., Kato Y., Nakashima N., Niidome Y. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces. Langmuir 2008, 24:12026-12031.
-
(2008)
Langmuir
, vol.24
, pp. 12026-12031
-
-
Horiguchi, Y.1
Honda, K.2
Kato, Y.3
Nakashima, N.4
Niidome, Y.5
-
45
-
-
79955913925
-
Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics
-
Ungureanu C., Kroes R., Petersen W., Groothuis T.A.M., Ungureanu F., Janssen H., et al. Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics. Nano Lett 2011, 11:1887-1894.
-
(2011)
Nano Lett
, vol.11
, pp. 1887-1894
-
-
Ungureanu, C.1
Kroes, R.2
Petersen, W.3
Groothuis, T.A.M.4
Ungureanu, F.5
Janssen, H.6
-
46
-
-
78651325917
-
Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation
-
Jang B., Kim Y.S., Choi Y. Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation. Small 2011, 7:265-270.
-
(2011)
Small
, vol.7
, pp. 265-270
-
-
Jang, B.1
Kim, Y.S.2
Choi, Y.3
-
47
-
-
84855740569
-
The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power
-
Yang K., Wan J., Zhang S., Tian B., Zhang Y., Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 2012, 33:2206-2214.
-
(2012)
Biomaterials
, vol.33
, pp. 2206-2214
-
-
Yang, K.1
Wan, J.2
Zhang, S.3
Tian, B.4
Zhang, Y.5
Liu, Z.6
-
48
-
-
84885673792
-
Graphene nanomesh promises extremely efficient invivo photothermal therapy
-
Akhavan O., Ghaderi E. Graphene nanomesh promises extremely efficient invivo photothermal therapy. Small 2013, 9:3593-3601.
-
(2013)
Small
, vol.9
, pp. 3593-3601
-
-
Akhavan, O.1
Ghaderi, E.2
-
49
-
-
84879636711
-
Strategies for optimizing the response ofcancer and normal tissues to radiation
-
Moding E.J., Kastan M.B., Kirsch D.G. Strategies for optimizing the response ofcancer and normal tissues to radiation. Nat Rev Drug Discov 2013, 12:526-542.
-
(2013)
Nat Rev Drug Discov
, vol.12
, pp. 526-542
-
-
Moding, E.J.1
Kastan, M.B.2
Kirsch, D.G.3
-
50
-
-
84879370847
-
Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma
-
Panngom K., Baik K.Y., Nam M.K., Han J.H., Rhim H., Choi E.H. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death Dis 2013, 4:642-650.
-
(2013)
Cell Death Dis
, vol.4
, pp. 642-650
-
-
Panngom, K.1
Baik, K.Y.2
Nam, M.K.3
Han, J.H.4
Rhim, H.5
Choi, E.H.6
-
51
-
-
84884998294
-
Anew platinum (II) compound anticancer drug candidate with selective cytotoxicity for breast cancer cells
-
Muscella A., Vetrugno C., Fanizzi F.P., Manca C., De Pascali S.A., Marsigliante S. Anew platinum (II) compound anticancer drug candidate with selective cytotoxicity for breast cancer cells. Cell Death Dis 2013, 4:796-806.
-
(2013)
Cell Death Dis
, vol.4
, pp. 796-806
-
-
Muscella, A.1
Vetrugno, C.2
Fanizzi, F.P.3
Manca, C.4
De Pascali, S.A.5
Marsigliante, S.6
-
52
-
-
79851500107
-
Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy
-
Liming W., Ying L., Wei L., Xiumei J., Yinglu J., Xiaochun W., et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett 2011, 11:772-780.
-
(2011)
Nano Lett
, vol.11
, pp. 772-780
-
-
Liming, W.1
Ying, L.2
Wei, L.3
Xiumei, J.4
Yinglu, J.5
Xiaochun, W.6
-
53
-
-
0036086130
-
Free radicals in the physiological control of cell function
-
Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002, 82:47-95.
-
(2002)
Physiol Rev
, vol.82
, pp. 47-95
-
-
Dröge, W.1
-
54
-
-
80053488405
-
Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy
-
Zhou F., Wu S., Wu B., Chen W.R., Xing D. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy. Small 2011, 7:2727-2735.
-
(2011)
Small
, vol.7
, pp. 2727-2735
-
-
Zhou, F.1
Wu, S.2
Wu, B.3
Chen, W.R.4
Xing, D.5
-
55
-
-
80055109585
-
The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways
-
Li Y., Liu Y., Fu Y., Wei T., Le Guyader L., Gao G., et al. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 2012, 33:402-411.
-
(2012)
Biomaterials
, vol.33
, pp. 402-411
-
-
Li, Y.1
Liu, Y.2
Fu, Y.3
Wei, T.4
Le Guyader, L.5
Gao, G.6
-
56
-
-
0029947822
-
Mitochondria are selective targets for the protective effects of heat shock against oxidative injury
-
Polla B.S., Kantengwa S., Francois D., Salvioli S., Franceschi C., Marsac C., et al. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci U S A 1996, 93:6458-6463.
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, pp. 6458-6463
-
-
Polla, B.S.1
Kantengwa, S.2
Francois, D.3
Salvioli, S.4
Franceschi, C.5
Marsac, C.6
-
57
-
-
69149092835
-
Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation
-
Burke A., Ding X., Singh R., Kraft R.A., Levi-Polyachenko N., Rylander M.N., et al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A 2009, 106:12897-12902.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 12897-12902
-
-
Burke, A.1
Ding, X.2
Singh, R.3
Kraft, R.A.4
Levi-Polyachenko, N.5
Rylander, M.N.6
|