-
1
-
-
58149091042
-
Nanoshell-enabled photothermal cancer therapy: impending clinical impact
-
Lal S., Clare S.E., Halas N.J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008, 41:1842-1851.
-
(2008)
Acc Chem Res
, vol.41
, pp. 1842-1851
-
-
Lal, S.1
Clare, S.E.2
Halas, N.J.3
-
2
-
-
80053181578
-
Theranostic nanoshells: from probe design to imaging and treatment of cancer
-
Bardhan R., Lal S., Joshi A., Halas N.J. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 2011, 44:936-946.
-
(2011)
Acc Chem Res
, vol.44
, pp. 936-946
-
-
Bardhan, R.1
Lal, S.2
Joshi, A.3
Halas, N.J.4
-
3
-
-
84858789825
-
Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy
-
Cheng L., Yang K., Li Y., Chen J., Wang C., Shao M., et al. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed 2011, 123:7523-7528.
-
(2011)
Angew Chem Int Ed
, vol.123
, pp. 7523-7528
-
-
Cheng, L.1
Yang, K.2
Li, Y.3
Chen, J.4
Wang, C.5
Shao, M.6
-
4
-
-
84862840610
-
Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy
-
Wang J., Zhu G., You M., Song E., Shukoor M.I., Zhang K., et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6:5070-5077.
-
(2012)
ACS Nano
, vol.6
, pp. 5070-5077
-
-
Wang, J.1
Zhu, G.2
You, M.3
Song, E.4
Shukoor, M.I.5
Zhang, K.6
-
5
-
-
75749094787
-
High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy
-
Wu X., Ming T., Wang X., Wang P., Wang J., Chen J. High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano 2009, 4:113-120.
-
(2009)
ACS Nano
, vol.4
, pp. 113-120
-
-
Wu, X.1
Ming, T.2
Wang, X.3
Wang, P.4
Wang, J.5
Chen, J.6
-
6
-
-
84866715410
-
Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy invitro
-
Gao L., Fei J., Zhao J., Li H., Cui Y., Li J. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy invitro. ACS Nano 2012, 6:8030-8040.
-
(2012)
ACS Nano
, vol.6
, pp. 8030-8040
-
-
Gao, L.1
Fei, J.2
Zhao, J.3
Li, H.4
Cui, Y.5
Li, J.6
-
7
-
-
84860799395
-
Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy
-
Wang X., Wang C., Cheng L., Lee S.-T., Liu Z. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. JAm Chem Soc 2012, 134:7414-7422.
-
(2012)
JAm Chem Soc
, vol.134
, pp. 7414-7422
-
-
Wang, X.1
Wang, C.2
Cheng, L.3
Lee, S.-T.4
Liu, Z.5
-
8
-
-
84871048168
-
Laser light triggered-activated carbon nanosystem for cancer therapy
-
Chu M., Peng J., Zhao J., Liang S., Shao Y., Wu Q. Laser light triggered-activated carbon nanosystem for cancer therapy. Biomaterials 2013, 34:1820-1832.
-
(2013)
Biomaterials
, vol.34
, pp. 1820-1832
-
-
Chu, M.1
Peng, J.2
Zhao, J.3
Liang, S.4
Shao, Y.5
Wu, Q.6
-
9
-
-
79955391283
-
Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy
-
Robinson J.T., Tabakman S.M., Liang Y., Wang H., Sanchez Casalongue H., Vinh D., et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. JAm Chem Soc 2011, 133:6825-6831.
-
(2011)
JAm Chem Soc
, vol.133
, pp. 6825-6831
-
-
Robinson, J.T.1
Tabakman, S.M.2
Liang, Y.3
Wang, H.4
Sanchez Casalongue, H.5
Vinh, D.6
-
10
-
-
84859141806
-
Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ
-
Hu S.-H., Chen Y.-W., Hung W.-T., Chen I.W., Chen S.-Y. Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater 2012, 24:1748-1754.
-
(2012)
Adv Mater
, vol.24
, pp. 1748-1754
-
-
Hu, S.-H.1
Chen, Y.-W.2
Hung, W.-T.3
Chen, I.W.4
Chen, S.-Y.5
-
11
-
-
79952643456
-
Silica coating improves the efficacy of Pd nanosheets for photothermal therapy of cancer cells using near infrared laser
-
Tang S., Huang X., Zheng N. Silica coating improves the efficacy of Pd nanosheets for photothermal therapy of cancer cells using near infrared laser. Chem Commun 2011, 47:3948-3950.
-
(2011)
Chem Commun
, vol.47
, pp. 3948-3950
-
-
Tang, S.1
Huang, X.2
Zheng, N.3
-
12
-
-
78049361957
-
64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy
-
64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. JAm Chem Soc 2010, 132:15351-15358.
-
(2010)
JAm Chem Soc
, vol.132
, pp. 15351-15358
-
-
Zhou, M.1
Zhang, R.2
Huang, M.3
Lu, W.4
Song, S.5
Melancon, M.P.6
-
13
-
-
79958810593
-
Copper selenide nanocrystals for photothermal therapy
-
Hessel C.M., Pattani V.P., Rasch M., Panthani M.G., Koo B., Tunnell J.W., et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett 2011, 11:2560-2566.
-
(2011)
Nano Lett
, vol.11
, pp. 2560-2566
-
-
Hessel, C.M.1
Pattani, V.P.2
Rasch, M.3
Panthani, M.G.4
Koo, B.5
Tunnell, J.W.6
-
14
-
-
84876040774
-
49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells invivo
-
49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells invivo. Adv Mater 2013, 25:2095-2100.
-
(2013)
Adv Mater
, vol.25
, pp. 2095-2100
-
-
Chen, Z.1
Wang, Q.2
Wang, H.3
Zhang, L.4
Song, G.5
Song, L.6
-
15
-
-
84873353886
-
Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells
-
Zha Z., Yue X., Ren Q., Dai Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 2013, 25:777-782.
-
(2013)
Adv Mater
, vol.25
, pp. 777-782
-
-
Zha, Z.1
Yue, X.2
Ren, Q.3
Dai, Z.4
-
16
-
-
84874872631
-
Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for invivo cancer therapy
-
Liu Y., Ai K., Liu J., Deng M., He Y., Lu L. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for invivo cancer therapy. Adv Mater 2013, 25:1353-1359.
-
(2013)
Adv Mater
, vol.25
, pp. 1353-1359
-
-
Liu, Y.1
Ai, K.2
Liu, J.3
Deng, M.4
He, Y.5
Lu, L.6
-
17
-
-
84868138281
-
Invitro and invivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles
-
Yang K., Xu H., Cheng L., Sun C., Wang J., Liu Z. Invitro and invivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater 2012, 24:5586-5592.
-
(2012)
Adv Mater
, vol.24
, pp. 5586-5592
-
-
Yang, K.1
Xu, H.2
Cheng, L.3
Sun, C.4
Wang, J.5
Liu, Z.6
-
18
-
-
79953033890
-
Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents
-
Lovell J.F., Jin C.S., Huynh E., Jin H., Kim C., Rubinstein J.L., et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 2011, 10:324-332.
-
(2011)
Nat Mater
, vol.10
, pp. 324-332
-
-
Lovell, J.F.1
Jin, C.S.2
Huynh, E.3
Jin, H.4
Kim, C.5
Rubinstein, J.L.6
-
19
-
-
84872004856
-
Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles
-
Lovell J.F., Jin C.S., Huynh E., MacDonald T.D., Cao W., Zheng G. Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew Chem Int Ed 2012, 124:2479-2483.
-
(2012)
Angew Chem Int Ed
, vol.124
, pp. 2479-2483
-
-
Lovell, J.F.1
Jin, C.S.2
Huynh, E.3
MacDonald, T.D.4
Cao, W.5
Zheng, G.6
-
20
-
-
33749854188
-
Photodynamic therapy in oncology
-
Triesscheijn M., Baas P., Schellens J.H.M., Stewart F.A. Photodynamic therapy in oncology. The Oncologist 2006, 11:1034-1044.
-
(2006)
The Oncologist
, vol.11
, pp. 1034-1044
-
-
Triesscheijn, M.1
Baas, P.2
Schellens, J.H.M.3
Stewart, F.A.4
-
21
-
-
34250198662
-
Templating effects and optical characterization of copper (II) phthalocyanine nanocrystallites thin film: nanoparticles, nanoflowers, nanocabbages, and nanoribbons
-
Karan S., Mallik B. Templating effects and optical characterization of copper (II) phthalocyanine nanocrystallites thin film: nanoparticles, nanoflowers, nanocabbages, and nanoribbons. JPhys Chem C 2007, 111:7352-7365.
-
(2007)
JPhys Chem C
, vol.111
, pp. 7352-7365
-
-
Karan, S.1
Mallik, B.2
-
22
-
-
76749158029
-
Ultrasmall, well-dispersed, hollow siliceous spheres with enhanced endocytosis properties
-
Zhu J., Tang J., Zhao L., Zhou X., Wang Y., Yu C. Ultrasmall, well-dispersed, hollow siliceous spheres with enhanced endocytosis properties. Small 2010, 6:276-282.
-
(2010)
Small
, vol.6
, pp. 276-282
-
-
Zhu, J.1
Tang, J.2
Zhao, L.3
Zhou, X.4
Wang, Y.5
Yu, C.6
-
23
-
-
33947423256
-
Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles
-
Roper D.K., Ahn W., Hoepfner M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. JPhys Chem C 2007, 111:3636-3641.
-
(2007)
JPhys Chem C
, vol.111
, pp. 3636-3641
-
-
Roper, D.K.1
Ahn, W.2
Hoepfner, M.3
-
24
-
-
84869757075
-
Enhanced photodynamic efficacy of zinc phthalocyanine by conjugating to heptalysine
-
Li L.S., Luo Z.P., Chen Z., Chen J.C., Zhou S.Y., Xu P., et al. Enhanced photodynamic efficacy of zinc phthalocyanine by conjugating to heptalysine. Bioconjug Chem 2012, 23:2168-2172.
-
(2012)
Bioconjug Chem
, vol.23
, pp. 2168-2172
-
-
Li, L.S.1
Luo, Z.P.2
Chen, Z.3
Chen, J.C.4
Zhou, S.Y.5
Xu, P.6
-
25
-
-
84861690057
-
Receptor-targeting phthalocyanine photosensitizer for improving antitumor photocytotoxicity
-
Xu P., Chen J.C., Chen Z., Zhou S.Y., Hu P., Chen X.Y., et al. Receptor-targeting phthalocyanine photosensitizer for improving antitumor photocytotoxicity. PLoS ONE 2012, 7:e37051.
-
(2012)
PLoS ONE
, vol.7
-
-
Xu, P.1
Chen, J.C.2
Chen, Z.3
Zhou, S.Y.4
Hu, P.5
Chen, X.Y.6
|