메뉴 건너뛰기




Volumn , Issue , 2012, Pages 63-101

Parametric link models for knowledge transfer in statistical learning

Author keywords

62J99 on the last page; Adaptive estimation; Applications AMS Subject Classification: 62H30; Classification; Clustering; EM algorithm; Link between populations; Regression; Transfer learning

Indexed keywords


EID: 84895329418     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (2)

References (32)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • D.M. Allen. The relationship between variable selection and data augmentation and a method for prediction. Technometrics, 16:125-127, 1974.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.M.1
  • 3
    • 0035989821 scopus 로고    scopus 로고
    • A generalized discriminant rule when training population and test population differ on their descriptive parameters
    • C. Biernacki, F. Beninel, and V. Bretagnolle. A generalized discriminant rule when training population and test population differ on their descriptive parameters. Biometrics, 58(2):387-397, 2002.
    • (2002) Biometrics , vol.58 , Issue.2 , pp. 387-397
    • Biernacki, C.1    Beninel, F.2    Bretagnolle, V.3
  • 5
    • 77957908636 scopus 로고    scopus 로고
    • Adaptive line armodels for regression: improving prediction when population has changed
    • C. Bouveyron and J. Jacques. Adaptive line armodels for regression: improving prediction when population has changed. Pattern Recognition Letters, 31(14):2237-2247, 2010.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.14 , pp. 2237-2247
    • Bouveyron, C.1    Jacques, J.2
  • 6
    • 84895386489 scopus 로고    scopus 로고
    • Adaptive mixtures of regressions: Improving predictive inference when population has changed
    • C. Bouveyron and J. Jacques. Adaptive mixtures of regressions:Improving predictive inference when population has changed. Pub. IRMA Lille, 70(VIII), 2010.
    • (2010) Pub. IRMA Lille , vol.70 , Issue.8
    • Bouveyron, C.1    Jacques, J.2
  • 8
    • 0000306608 scopus 로고
    • Clustering criteria for discrete data and latent class models
    • G. Celeux and G. Govaert. Clustering criteria for discrete data and latent class models. Journal of Classification, 8:157-176, 1991.
    • (1991) Journal of Classification , vol.8 , pp. 157-176
    • Celeux, G.1    Govaert, G.2
  • 9
    • 0029305528 scopus 로고
    • Parsimonious gaussian models in cluster analysis
    • G. Celeux and G. Govaert. Parsimonious gaussian models in cluster analysis. Pattern Recognition, 28:781-793, 1995.
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 12
    • 84895359145 scopus 로고    scopus 로고
    • Dynamic analysis of the business failure process: astudy of bankruptcy trajectories
    • Ponte Delgada, Portugual
    • P. DuJardin and E.Séverin. Dynamic analysis of the business failure process: astudy of bankruptcy trajectories. In Portuguese Finance Network, Ponte Delgada, Portugual, 2010.
    • (2010) Portuguese Finance Network
    • DuJardin, P.1    Séverin, E.2
  • 14
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers viamodel-based cluster analysis
    • C. Fraley and A. E. Raftery. How many clusters? Which clustering method? Answers viamodel-based cluster analysis. Computer Journal, 41:578-588, 1998.
    • (1998) Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 15
  • 21
    • 77951140579 scopus 로고    scopus 로고
    • Extension of model-based classification for binary data when training and test populations differ
    • J. Jacques and C. Biernacki. Extension of model-based classification for binary data when training and test populations differ. Journal of Applied Statistics, 37(5):749-766, 2010.
    • (2010) Journal of Applied Statistics , vol.37 , Issue.5 , pp. 749-766
    • Jacques, J.1    Biernacki, C.2
  • 23
    • 84895234790 scopus 로고    scopus 로고
    • Simultaneous Gaussian Model-Based Clustering for Samples of Multiple Origins
    • in press
    • A. Lourme and C. Biernacki. Simultaneous Gaussian Model-Based Clustering for Samples of Multiple Origins. Computational Statistics, in press., 2012.
    • (2012) Computational Statistics
    • Lourme, A.1    Biernacki, C.2
  • 24
    • 84893146364 scopus 로고    scopus 로고
    • Simultaneous t-model-based clustering for data differing over time period: Application for understanding companies financial health
    • CSBIGS
    • A. Lourme and C. Biernacki. Simultaneous t-model-based clustering for data differing over time period: Application for understanding companies financial health. Case Studiesin Business, Industry and Government Statistics(CSBIGS), 4(2), 2011.
    • (2011) Case Studiesin Business, Industry and Government Statistics , vol.4 , Issue.2
    • Lourme, A.1    Biernacki, C.2
  • 25
    • 0003545916 scopus 로고
    • Discriminant analysis and statistical pattern recognition. Wiley Series in Probability and Mathematical Statistics
    • John Wiley&Sons Inc., NewYork, A Wiley-Inter science Publication
    • G. J. McLachlan. Discriminant analysis and statistical pattern recognition. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley&Sons Inc., NewYork, 1992., A Wiley-Inter science Publication.
    • (1992) Applied Probability and Statistics
    • McLachlan, G.J.1
  • 26
    • 0004027527 scopus 로고    scopus 로고
    • Discriminant Analysis and Statistical Pattern Recognition
    • Wiley-Interscience
    • G. J. Mclachlan. Discriminant Analysis and Statistical Pattern Recognition. Wiley Series in Probability and Statistics. Wiley-Interscience, 2004.
    • (2004) Wiley Series in Probability and Statistics
    • Mclachlan, G.J.1
  • 31
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464, 1978.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.