메뉴 건너뛰기




Volumn 31, Issue 3, 2013, Pages 1-43

Discovering tasks from search engine query logs

Author keywords

Collective task discovery; Collective tasks; Query clustering; Query log analysis; User search intent; User search session boundaries; User task discovery; User tasks

Indexed keywords

QUERY PROCESSING; SEARCH ENGINES; WEBSITES;

EID: 84894573532     PISSN: 10468188     EISSN: 15582868     Source Type: Journal    
DOI: 10.1145/2493175.2493179     Document Type: Article
Times cited : (51)

References (53)
  • 5
    • 0142030258 scopus 로고    scopus 로고
    • A taxonomy of web search
    • BRODER, A. 2002. A taxonomy of Web search. SIGIR Forum 36, 2, 2, 3-10.
    • (2002) SIGIR Forum , vol.36 , Issue.2 , pp. 3-10
    • Broder, A.1
  • 11
    • 63149152074 scopus 로고    scopus 로고
    • A survey on session detection methods in query logs and a proposal for future evaluation
    • GAYO-AVELLO, D. 2009. A survey on session detection methods in query logs and a proposal for future evaluation. Info. Sci. 179, 12, 1822-1843.
    • (2009) Info. Sci. , vol.179 , Issue.12 , pp. 1822-1843
    • Gayo-Avello, D.1
  • 15
    • 0036722216 scopus 로고    scopus 로고
    • Combining evidence for automatic web session identification
    • HE, D.,GöKER, A., AND HARPER, D. J. 2002. Combining evidence for automatic web session identification. Info. Process. Manage. 38, 5, 727-742.
    • (2002) Info. Process. Manage. , vol.38 , Issue.5 , pp. 727-742
    • He D.Göker, A.1    Harper, D.J.2
  • 16
    • 84976669902 scopus 로고
    • Algorithm 447: Efficient algorithms for graph manipulation
    • HOPCROFT, J. AND TARJAN, R. 1973. Algorithm 447: Efficient algorithms for graph manipulation. Commun. ACM 16, 6, 372-378.
    • (1973) Commun. ACM , vol.16 , Issue.6 , pp. 372-378
    • Hopcroft, J.1    Tarjan, R.2
  • 17
    • 23744485775 scopus 로고    scopus 로고
    • How are we searching the world wide web?: A comparison of nine search engine transaction logs
    • JANSEN, B. J. AND SPINK, A. 2006. How are we searching the world wide Web?: A comparison of nine search engine transaction logs. Info. Process. Manage. 42, 1, 248-263.
    • (2006) Info. Process. Manage. , vol.42 , Issue.1 , pp. 248-263
    • Jansen, B.J.1    Spink, A.2
  • 18
    • 0001685668 scopus 로고    scopus 로고
    • Real life information retrieval: A study of user queries on the web
    • JANSEN, B. J., SPINK, A., BATEMAN, J., AND SARACEVIC, T. 1998. Real life information retrieval: A study of user queries on the web. SIGIR Forum 32, 1, 5-17.
    • (1998) SIGIR Forum , vol.32 , Issue.1 , pp. 5-17
    • Jansen, B.J.1    Spink, A.2    Bateman, J.3    Saracevic, T.4
  • 20
    • 33947142132 scopus 로고    scopus 로고
    • S-grams: Defining generalized n-grams for information retrieval
    • JäRVELIN, A., JäRVELIN, A., AND JäRVELIN, K. 2007. s-grams: Defining generalized n-grams for information retrieval. Info. Process. Manage. 43, 4, 1005-1019.
    • (2007) Info. Process. Manage. , vol.43 , Issue.4 , pp. 1005-1019
    • Järvelin, A.1    Järvelin, A.2    Järvelin, K.3
  • 26
    • 85050285247 scopus 로고
    • Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone
    • ACM, New York, NY
    • LESK, M. 1986. Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone. In Proceedings of the 5th ACM International Conference on Systems Documentation (SIGDOC'86). ACM, New York, NY, 24-26.
    • (1986) Proceedings of the 5th ACM International Conference on Systems Documentation (SIGDOC'86). , pp. 24-26
    • Lesk, M.1
  • 27
    • 52949150848 scopus 로고    scopus 로고
    • Personalized concept-based clustering of search engine queries
    • LEUNG, K. W. T., NG, W., AND LEE, D. L. 2008. Personalized concept-based clustering of search engine queries. IEEE Trans. Knowl. Data Engi. 20, 11, 1505-1518.
    • (2008) IEEE Trans. Knowl. Data Engi. , vol.20 , Issue.11 , pp. 1505-1518
    • Leung, K.W.T.1    Ng, W.2    Lee, D.L.3
  • 29
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • L. M. Le Cam and J. Neyman Eds. University of California Press, Berkeley, CA
    • MACQUEEN, J. B. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, L. M. Le Cam and J. Neyman Eds., Vol. 1. University of California Press, Berkeley, CA, 281-297.
    • (1967) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • Macqueen, J.B.1
  • 31
  • 32
    • 16244397343 scopus 로고    scopus 로고
    • Application of automatic topic identification on excite web search engine data logs
    • OZMUTLU, H. C. AND Ç AVDUR, F. 2005. Application of automatic topic identification on excite web search engine data logs. Info. Process. Manage. 41, 5, 1243-1262.
    • (2005) Info. Process. Manage. , vol.41 , Issue.5 , pp. 1243-1262
    • Ozmutlu, H.C.1    Çavdur, F.2
  • 33
    • 84948481845 scopus 로고
    • Morgan Kaufmann Publishers, San Francisco, CA
    • PORTER, M. F. 1980. An Algorithm for Suffix Stripping Vol. 14. Morgan Kaufmann Publishers, San Francisco, CA, 130-137.
    • (1980) An Algorithm for Suffix Stripping , vol.14 , pp. 130-137
    • Porter, M.F.1
  • 38
    • 0035619627 scopus 로고    scopus 로고
    • The pareto, zipf and other power laws
    • REED, W. 2001. The Pareto, zipf and other power laws. Econ. Lett. 74, 1, 15-19.
    • (2001) Econ. Lett. , vol.74 , Issue.1 , pp. 15-19
    • Reed, W.1
  • 40
    • 55149100303 scopus 로고    scopus 로고
    • Learning about the world through long-Term query logs
    • RICHARDSON, M. 2008. Learning about the world through long-Term query logs. ACM Trans. Web 2, 4, 1-27.
    • (2008) ACM Trans. Web , vol.2 , Issue.4 , pp. 1-27
    • Richardson, M.1
  • 43
  • 46
    • 3042687811 scopus 로고    scopus 로고
    • Analysis of a very large web search engine query log
    • SILVERSTEIN, C.,MARAIS, H., HENZINGER, M., AND MORICZ, M. 1999. Analysis of a very large Web search engine query log. SIGIR Forum 33, 1, 6-12.
    • (1999) SIGIR Forum , vol.33 , Issue.1 , pp. 6-12
    • Silverstein, C.1    Marais, H.2    Henzinger, M.3    Moricz, M.4
  • 47
    • 74549114729 scopus 로고    scopus 로고
    • Mining query logs: Turning search usage data into knowledge
    • SILVESTRI, F. 2010. Mining Query Logs: Turning search usage data into knowledge. Found. Trends Info. Ret. 1, 1-2, 1-174.
    • (2010) Found. Trends Info. Ret. , vol.1 , Issue.1-2 , pp. 1-174
    • Silvestri, F.1
  • 51
    • 0038546532 scopus 로고    scopus 로고
    • Query clustering using user logs
    • WEN, J. R., NIE, J. Y., AND ZHANG, H. 2002. Query clustering using user logs. ACM Trans. Info. Syst. 20, 1, 59-81.
    • (2002) ACM Trans. Info. Syst. , vol.20 , Issue.1 , pp. 59-81
    • Wen, J.R.1    Nie, J.Y.2    Zhang, H.3
  • 53
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical comparisons of selected criterion functions for document clustering
    • ZHAO, Y. AND KARYPIS, G. 2004. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learn. 55, 3, 311-331.
    • (2004) Machine Learn. , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.