메뉴 건너뛰기




Volumn 55, Issue 1, 2014, Pages 225-249

Nonlife ratemaking and risk management with Bayesian generalized additive models for location, scale, and shape

Author keywords

MCMC; Mixed Poisson regression; Negative binomial; Overdispersed count data; Probabilistic forecasts; Zero adjusted models; Zero inflated Poisson

Indexed keywords


EID: 84894489843     PISSN: 01676687     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.insmatheco.2014.02.001     Document Type: Article
Times cited : (47)

References (40)
  • 3
    • 78751489546 scopus 로고    scopus 로고
    • Estimating total claim size in the auto insurance industry: a comparion between Tweedie and zero-adjusted Inverse Gaussian distribution
    • Bortoluzzo A.B., Claro D.P., Caetano M.A.L., Artes R. Estimating total claim size in the auto insurance industry: a comparion between Tweedie and zero-adjusted Inverse Gaussian distribution. Brazilian Administration Review 2011, 8:37-47.
    • (2011) Brazilian Administration Review , vol.8 , pp. 37-47
    • Bortoluzzo, A.B.1    Claro, D.P.2    Caetano, M.A.L.3    Artes, R.4
  • 4
    • 58249088669 scopus 로고    scopus 로고
    • Risk classification for claim counts: a comparative analysis of various zero-inflated mixed Poisson and hurdle models
    • Boucher J.-Ph., Denuit M., Guillen M. Risk classification for claim counts: a comparative analysis of various zero-inflated mixed Poisson and hurdle models. North American Actuarial Journal 2007, 11:110-131.
    • (2007) North American Actuarial Journal , vol.11 , pp. 110-131
    • Boucher, J.-P.1    Denuit, M.2    Guillen, M.3
  • 5
    • 26444547624 scopus 로고    scopus 로고
    • Generalized structured additive regression based on Bayesian P-splines
    • Brezger A., Lang S. Generalized structured additive regression based on Bayesian P-splines. Computational Statistics & Data Analysis 2006, 50:967-991.
    • (2006) Computational Statistics & Data Analysis , vol.50 , pp. 967-991
    • Brezger, A.1    Lang, S.2
  • 6
    • 85011196015 scopus 로고    scopus 로고
    • Generalized Pareto fit to the society of Actuaries large claims database
    • Cebrian A., Denuit M., Lambert Ph. Generalized Pareto fit to the society of Actuaries large claims database. North American Actuarial Journal 2003, 7:18-36.
    • (2003) North American Actuarial Journal , vol.7 , pp. 18-36
    • Cebrian, A.1    Denuit, M.2    Lambert, P.3
  • 10
    • 8644257675 scopus 로고    scopus 로고
    • Penalized additive regression for space-time data: a Bayesian perspective
    • Fahrmeir L., Kneib T., Lang S. Penalized additive regression for space-time data: a Bayesian perspective. Statistica Sinica 2004, 14:713-743.
    • (2004) Statistica Sinica , vol.14 , pp. 713-743
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 12
    • 0042042167 scopus 로고    scopus 로고
    • Sampling from the posterior distribution in Generalized Linear Mixed Models
    • Gamerman D. Sampling from the posterior distribution in Generalized Linear Mixed Models. Statistics and Computing 1997, 7:57-68.
    • (1997) Statistics and Computing , vol.7 , pp. 57-68
    • Gamerman, D.1
  • 13
    • 84980655714 scopus 로고    scopus 로고
    • A scaling model for severity of operational losses using generalized additive models for location scale and shape (GAMLSS)
    • Ganegoda A., Evans J. A scaling model for severity of operational losses using generalized additive models for location scale and shape (GAMLSS). Annals of Actuarial Science 2013, 7:61-100.
    • (2013) Annals of Actuarial Science , vol.7 , pp. 61-100
    • Ganegoda, A.1    Evans, J.2
  • 15
    • 79958744432 scopus 로고    scopus 로고
    • Comparing density forecasts using threshold and quantile-weighted scoring rules
    • Gneiting T., Ranjan R. Comparing density forecasts using threshold and quantile-weighted scoring rules. Journal of Business & Economic Statistics 2011, 29:411-421.
    • (2011) Journal of Business & Economic Statistics , vol.29 , pp. 411-421
    • Gneiting, T.1    Ranjan, R.2
  • 21
    • 33751018838 scopus 로고    scopus 로고
    • Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models
    • Jullion A., Lambert P. Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models. Computational Statistics & Data Analysis 2007, 51:2542-2558.
    • (2007) Computational Statistics & Data Analysis , vol.51 , pp. 2542-2558
    • Jullion, A.1    Lambert, P.2
  • 28
    • 80052839922 scopus 로고    scopus 로고
    • Composite Lognormal-Pareto model with random threshold
    • Pigeon M., Denuit M. Composite Lognormal-Pareto model with random threshold. Scandinavian Actuarial Journal 2011, 177-192.
    • (2011) Scandinavian Actuarial Journal , pp. 177-192
    • Pigeon, M.1    Denuit, M.2
  • 29
    • 84894426963 scopus 로고    scopus 로고
    • Estimation of claim cost data using zero-adjusted Gamma and Inverse Gaussian regression models
    • Resti Y., Ismail N., Jamaan S.H. Estimation of claim cost data using zero-adjusted Gamma and Inverse Gaussian regression models. Journal of Mathematics and Statistics 2013, 9:186-192.
    • (2013) Journal of Mathematics and Statistics , vol.9 , pp. 186-192
    • Resti, Y.1    Ismail, N.2    Jamaan, S.H.3
  • 30
    • 18544382833 scopus 로고    scopus 로고
    • Generalized additive models for location, scale and shape (with discussion)
    • Rigby R.A., Stasinopoulos D.M. Generalized additive models for location, scale and shape (with discussion). Applied Statistics 2005, 54:507-554.
    • (2005) Applied Statistics , vol.54 , pp. 507-554
    • Rigby, R.A.1    Stasinopoulos, D.M.2
  • 33
    • 85011436968 scopus 로고    scopus 로고
    • Fitting Tweedie's compund Poisson model to insurance claims data: dispersion modeling
    • Smyth G.K., Jørgensen B. Fitting Tweedie's compund Poisson model to insurance claims data: dispersion modeling. Astin Bulletin 2002, 32:143-157.
    • (2002) Astin Bulletin , vol.32 , pp. 143-157
    • Smyth, G.K.1    Jørgensen, B.2
  • 35
    • 40549109271 scopus 로고    scopus 로고
    • Generalized additive models for location scale and shape (GAMLSS) in R
    • Stasinopoulos D.M., Rigby R.A. Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software 2007, 23:1-46.
    • (2007) Journal of Statistical Software , vol.23 , pp. 1-46
    • Stasinopoulos, D.M.1    Rigby, R.A.2
  • 37
    • 4944226585 scopus 로고    scopus 로고
    • Stable and efficient multiple smoothing parameter estimation for generalized additive models
    • Wood S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association 2004, 99:673-686.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 673-686
    • Wood, S.N.1
  • 39
    • 42149179133 scopus 로고    scopus 로고
    • Fast stable direct fitting and smoothness selection for Generalized Additive Models
    • Wood S.N. Fast stable direct fitting and smoothness selection for Generalized Additive Models. Journal of the Royal Statistical Society - Series B 2008, 70:495-518.
    • (2008) Journal of the Royal Statistical Society - Series B , vol.70 , pp. 495-518
    • Wood, S.N.1
  • 40
    • 16844379545 scopus 로고    scopus 로고
    • On modeling claim frequency data in general insurance with extra zeros
    • Yip K.C.H., Yau K.K.W. On modeling claim frequency data in general insurance with extra zeros. Insurance: Mathematics & Economics 2005, 36:153-163.
    • (2005) Insurance: Mathematics & Economics , vol.36 , pp. 153-163
    • Yip, K.C.H.1    Yau, K.K.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.