메뉴 건너뛰기




Volumn 19, Issue 3, 2014, Pages 183-192

Imaging element distribution and speciation in plant cells

Author keywords

Chemical speciation; Plant cells; Synchrotron based techniques

Indexed keywords

CHEMICAL SPECIATION; MASS SPECTROMETRY; METABOLISM; PLANT CELL; REVIEW; SPECTROMETRY; SYNCHROTRON-BASED TECHNIQUES;

EID: 84894465960     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2013.12.001     Document Type: Review
Times cited : (137)

References (84)
  • 2
    • 84873180865 scopus 로고    scopus 로고
    • Plant science: the key to preventing slow cadmium poisoning
    • Clemens S., et al. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci. 2013, 18:92-99.
    • (2013) Trends Plant Sci. , vol.18 , pp. 92-99
    • Clemens, S.1
  • 3
    • 77952513568 scopus 로고    scopus 로고
    • Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies
    • Zhao F.J., et al. Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 2010, 61:535-559.
    • (2010) Annu. Rev. Plant Biol. , vol.61 , pp. 535-559
    • Zhao, F.J.1
  • 4
    • 61649095406 scopus 로고    scopus 로고
    • Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine
    • White P.J., Broadley M.R. Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182:49-84.
    • (2009) New Phytol. , vol.182 , pp. 49-84
    • White, P.J.1    Broadley, M.R.2
  • 5
    • 84859026579 scopus 로고    scopus 로고
    • Grand challenges in plant nutrition
    • von Wirén N. Grand challenges in plant nutrition. Front. Plant Sci. 2011, 2:4.
    • (2011) Front. Plant Sci. , vol.2 , pp. 4
    • von Wirén, N.1
  • 6
    • 44949161992 scopus 로고    scopus 로고
    • Ionomics and the study of the plant ionome
    • Salt D.E., et al. Ionomics and the study of the plant ionome. Annu. Rev. Plant Biol. 2008, 59:709-733.
    • (2008) Annu. Rev. Plant Biol. , vol.59 , pp. 709-733
    • Salt, D.E.1
  • 7
    • 77952543747 scopus 로고    scopus 로고
    • Comparative physiology of elemental distributions in plants
    • Conn S., Gilliham M. Comparative physiology of elemental distributions in plants. Ann. Bot. 2010, 105:1081-1102.
    • (2010) Ann. Bot. , vol.105 , pp. 1081-1102
    • Conn, S.1    Gilliham, M.2
  • 8
    • 0345425785 scopus 로고    scopus 로고
    • Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens
    • Küpper H., et al. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 1999, 119:305-311.
    • (1999) Plant Physiol. , vol.119 , pp. 305-311
    • Küpper, H.1
  • 9
    • 51249088139 scopus 로고    scopus 로고
    • Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE
    • Vogel-Mikus K., et al. Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ. 2008, 31:1484-1496.
    • (2008) Plant Cell Environ. , vol.31 , pp. 1484-1496
    • Vogel-Mikus, K.1
  • 10
    • 84872134100 scopus 로고    scopus 로고
    • Use of synchrotron-based techniques to elucidate metal uptake and metabolism in plants
    • Sarret G., et al. Use of synchrotron-based techniques to elucidate metal uptake and metabolism in plants. Adv. Agron. 2013, 119:1-82.
    • (2013) Adv. Agron. , vol.119 , pp. 1-82
    • Sarret, G.1
  • 11
    • 67349090582 scopus 로고    scopus 로고
    • Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives
    • Lombi E., Susini J. Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil 2009, 320:1-35.
    • (2009) Plant Soil , vol.320 , pp. 1-35
    • Lombi, E.1    Susini, J.2
  • 12
    • 84870494964 scopus 로고    scopus 로고
    • Mapping element distributions in plant tissues using synchrotron X-ray fluorescence techniques
    • Springer, F.J.M. Maathuis (Ed.)
    • Donner E., et al. Mapping element distributions in plant tissues using synchrotron X-ray fluorescence techniques. Plant Mineral Nutrients: Methods and Protocols. Methods in Molecular Biology (Vol. 953) 2013, 143-159. Springer. F.J.M. Maathuis (Ed.).
    • (2013) Plant Mineral Nutrients: Methods and Protocols. Methods in Molecular Biology (Vol. 953) , pp. 143-159
    • Donner, E.1
  • 13
    • 84855293822 scopus 로고    scopus 로고
    • The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed
    • Punshon T., et al. The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed. Plant Physiol. 2012, 158:352-362.
    • (2012) Plant Physiol. , vol.158 , pp. 352-362
    • Punshon, T.1
  • 14
    • 84888299522 scopus 로고    scopus 로고
    • Combined NanoSIMS and synchrotron X-ray fluorescence reveals distinct cellular and subcellular distribution patterns of trace elements in rice tissues
    • Moore K.L., et al. Combined NanoSIMS and synchrotron X-ray fluorescence reveals distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytol. 2014, 201:104-115.
    • (2014) New Phytol. , vol.201 , pp. 104-115
    • Moore, K.L.1
  • 15
    • 78049432820 scopus 로고    scopus 로고
    • Hard X-ray fluorescence tomography - an emerging tool for structural visualization
    • de Jonge M.D., Vogt S. Hard X-ray fluorescence tomography - an emerging tool for structural visualization. Curr. Opin. Struct. Biol. 2010, 20:606-614.
    • (2010) Curr. Opin. Struct. Biol. , vol.20 , pp. 606-614
    • de Jonge, M.D.1    Vogt, S.2
  • 16
    • 79955118239 scopus 로고    scopus 로고
    • In situ analysis of metal(loid)s in plants: state of the art and artefacts
    • Lombi E., et al. In situ analysis of metal(loid)s in plants: state of the art and artefacts. Environ. Exp. Bot. 2011, 72:3-17.
    • (2011) Environ. Exp. Bot. , vol.72 , pp. 3-17
    • Lombi, E.1
  • 17
    • 84883226087 scopus 로고    scopus 로고
    • In situ speciation and distribution of toxic selenium in hydrated roots of cowpea
    • Wang P., et al. In situ speciation and distribution of toxic selenium in hydrated roots of cowpea. Plant Physiol. 2013, 163:407-418.
    • (2013) Plant Physiol. , vol.163 , pp. 407-418
    • Wang, P.1
  • 18
    • 84867931683 scopus 로고    scopus 로고
    • X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples
    • George G.N., et al. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples. J. Synchr. Radiat. 2012, 19:875-886.
    • (2012) J. Synchr. Radiat. , vol.19 , pp. 875-886
    • George, G.N.1
  • 19
    • 79956285051 scopus 로고    scopus 로고
    • Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors
    • Lombi E., et al. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors. Anal. Bioanal. Chem. 2011, 400:1637-1644.
    • (2011) Anal. Bioanal. Chem. , vol.400 , pp. 1637-1644
    • Lombi, E.1
  • 20
    • 53749100896 scopus 로고    scopus 로고
    • Imaging nutrient distributions in plant tissue using time-of-flight secondary ion mass spectrometry and scanning electron microscopy
    • Metzner R., et al. Imaging nutrient distributions in plant tissue using time-of-flight secondary ion mass spectrometry and scanning electron microscopy. Plant Physiol. 2008, 147:1774-1787.
    • (2008) Plant Physiol. , vol.147 , pp. 1774-1787
    • Metzner, R.1
  • 21
    • 84858698241 scopus 로고    scopus 로고
    • Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants
    • Moore K.L., et al. Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants. Anal. Bioanal. Chem. 2012, 402:3263-3273.
    • (2012) Anal. Bioanal. Chem. , vol.402 , pp. 3263-3273
    • Moore, K.L.1
  • 22
    • 77956090678 scopus 로고    scopus 로고
    • High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry
    • Smart K.E., et al. High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. Plant J. 2010, 63:870-879.
    • (2010) Plant J. , vol.63 , pp. 870-879
    • Smart, K.E.1
  • 23
    • 0034142048 scopus 로고    scopus 로고
    • Subcellular imaging by dynamic SIMS ion microscopy
    • Chandra S., et al. Subcellular imaging by dynamic SIMS ion microscopy. Anal. Chem. 2000, 72:104a-114a.
    • (2000) Anal. Chem. , vol.72
    • Chandra, S.1
  • 24
    • 79958054279 scopus 로고    scopus 로고
    • NanoSIMS analysis reveals contrasting patterns of arsenic and silicon localization in rice roots
    • Moore K.L., et al. NanoSIMS analysis reveals contrasting patterns of arsenic and silicon localization in rice roots. Plant Physiol. 2011, 156:913-924.
    • (2011) Plant Physiol. , vol.156 , pp. 913-924
    • Moore, K.L.1
  • 25
    • 84860753006 scopus 로고    scopus 로고
    • Imaging techniques for elements and element species in plant science
    • Wu B., Becker J.S. Imaging techniques for elements and element species in plant science. Metallomics 2012, 4:403-416.
    • (2012) Metallomics , vol.4 , pp. 403-416
    • Wu, B.1    Becker, J.S.2
  • 26
    • 77955550839 scopus 로고    scopus 로고
    • Scaling down the bioimaging of metals by laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS)
    • Becker J.S., et al. Scaling down the bioimaging of metals by laser microdissection inductively coupled plasma mass spectrometry (LMD-ICP-MS). Int. J. Mass Spectrom. 2010, 294:1-6.
    • (2010) Int. J. Mass Spectrom. , vol.294 , pp. 1-6
    • Becker, J.S.1
  • 27
    • 48249086162 scopus 로고    scopus 로고
    • Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp gemmifera, using high-energy synchrotron radiation
    • Fukuda N., et al. Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp gemmifera, using high-energy synchrotron radiation. J. Anal. Atom. Spectrom. 2008, 23:1068-1075.
    • (2008) J. Anal. Atom. Spectrom. , vol.23 , pp. 1068-1075
    • Fukuda, N.1
  • 28
    • 0347928660 scopus 로고    scopus 로고
    • Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri
    • Sarret G., et al. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol. 2002, 130:1815-1826.
    • (2002) Plant Physiol. , vol.130 , pp. 1815-1826
    • Sarret, G.1
  • 29
    • 16844378422 scopus 로고    scopus 로고
    • Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale
    • McNear D.H., et al. Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environ. Sci. Technol. 2005, 39:2210-2218.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 2210-2218
    • McNear, D.H.1
  • 30
    • 33748807207 scopus 로고    scopus 로고
    • Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata
    • Freeman J.L., et al. Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol. 2006, 142:124-134.
    • (2006) Plant Physiol. , vol.142 , pp. 124-134
    • Freeman, J.L.1
  • 31
    • 33747510060 scopus 로고    scopus 로고
    • Localizing the biochemical transformations of arsenate in a hyperaccumulating fern
    • Pickering I.J., et al. Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ. Sci. Technol. 2006, 40:5010-5014.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5010-5014
    • Pickering, I.J.1
  • 32
    • 33846428087 scopus 로고    scopus 로고
    • Synchrotron X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia
    • Scheckel K.G., et al. Synchrotron X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia. Plant Soil 2007, 290:51-60.
    • (2007) Plant Soil , vol.290 , pp. 51-60
    • Scheckel, K.G.1
  • 33
    • 8544280752 scopus 로고    scopus 로고
    • Arsenic sequestration by ferric iron plaque on cattail roots
    • Blute N.K., et al. Arsenic sequestration by ferric iron plaque on cattail roots. Environ. Sci. Technol. 2004, 38:6074-6077.
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 6074-6077
    • Blute, N.K.1
  • 34
    • 78549248559 scopus 로고    scopus 로고
    • Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings
    • Seyfferth A.L., et al. Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environ. Sci. Technol. 2010, 44:8108-8113.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 8108-8113
    • Seyfferth, A.L.1
  • 35
    • 11144275167 scopus 로고    scopus 로고
    • Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots
    • Chen Z., et al. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol. 2005, 165:91-97.
    • (2005) New Phytol. , vol.165 , pp. 91-97
    • Chen, Z.1
  • 36
    • 84863686431 scopus 로고    scopus 로고
    • Examination of the distribution of arsenic in hydrated and fresh cowpea roots using two- and three-dimensional techniques
    • Kopittke P.M., et al. Examination of the distribution of arsenic in hydrated and fresh cowpea roots using two- and three-dimensional techniques. Plant Physiol. 2012, 159:1149-1158.
    • (2012) Plant Physiol. , vol.159 , pp. 1149-1158
    • Kopittke, P.M.1
  • 37
    • 79957950124 scopus 로고    scopus 로고
    • Fast X-ray fluorescence microtomography of hydrated biological samples
    • Lombi E., et al. Fast X-ray fluorescence microtomography of hydrated biological samples. PLoS ONE 2011, 6:e20626.
    • (2011) PLoS ONE , vol.6
    • Lombi, E.1
  • 38
    • 79957810617 scopus 로고    scopus 로고
    • In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea
    • Kopittke P.M., et al. In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. Plant Physiol. 2011, 156:663-673.
    • (2011) Plant Physiol. , vol.156 , pp. 663-673
    • Kopittke, P.M.1
  • 39
    • 84874963605 scopus 로고    scopus 로고
    • Distribution and speciation of Mn in hydrated roots of cowpea at levels inhibiting root growth
    • Kopittke P.M., et al. Distribution and speciation of Mn in hydrated roots of cowpea at levels inhibiting root growth. Physiol. Plant. 2013, 147:453-464.
    • (2013) Physiol. Plant. , vol.147 , pp. 453-464
    • Kopittke, P.M.1
  • 40
    • 73249132993 scopus 로고    scopus 로고
    • Grain unloading of arsenic species in rice
    • Carey A.M., et al. Grain unloading of arsenic species in rice. Plant Physiol. 2010, 152:309-319.
    • (2010) Plant Physiol. , vol.152 , pp. 309-319
    • Carey, A.M.1
  • 41
    • 83555176422 scopus 로고    scopus 로고
    • 73As tracer
    • 73As tracer. Plant Soil 2012, 350:413-420.
    • (2012) Plant Soil , vol.350 , pp. 413-420
    • Zhao, F.J.1
  • 42
    • 80052385682 scopus 로고    scopus 로고
    • Phloem transport of arsenic species from flag leaf to grain during grain filling
    • Carey A.M., et al. Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol. 2011, 192:87-98.
    • (2011) New Phytol. , vol.192 , pp. 87-98
    • Carey, A.M.1
  • 43
    • 68049116620 scopus 로고    scopus 로고
    • Speciation and distribution of arsenic and localization of nutrients in rice grains
    • Lombi E., et al. Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol. 2009, 184:193-201.
    • (2009) New Phytol. , vol.184 , pp. 193-201
    • Lombi, E.1
  • 44
    • 84875061650 scopus 로고    scopus 로고
    • Differential toxicity and accumulation of inorganic and methylated arsenic in rice
    • Zheng M.Z., et al. Differential toxicity and accumulation of inorganic and methylated arsenic in rice. Plant Soil 2013, 365:227-238.
    • (2013) Plant Soil , vol.365 , pp. 227-238
    • Zheng, M.Z.1
  • 45
    • 72849136557 scopus 로고    scopus 로고
    • NanoSIMS analysis of arsenic and selenium in cereal grain
    • Moore K.L., et al. NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytol. 2010, 185:434-445.
    • (2010) New Phytol. , vol.185 , pp. 434-445
    • Moore, K.L.1
  • 46
    • 33846212677 scopus 로고    scopus 로고
    • Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana
    • Van Belleghem F., et al. Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol. 2007, 173:495-508.
    • (2007) New Phytol. , vol.173 , pp. 495-508
    • Van Belleghem, F.1
  • 47
    • 33845219883 scopus 로고    scopus 로고
    • Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy
    • Isaure M.P., et al. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochim. Acta B: Atom. Spectrom. 2006, 61:1242-1252.
    • (2006) Spectrochim. Acta B: Atom. Spectrom. , vol.61 , pp. 1242-1252
    • Isaure, M.P.1
  • 48
    • 84861021109 scopus 로고    scopus 로고
    • Role of the node in controlling traffic of cadmium, zinc, and manganese in rice
    • Yamaguchi N., et al. Role of the node in controlling traffic of cadmium, zinc, and manganese in rice. J. Exp. Bot. 2012, 63:2729-2737.
    • (2012) J. Exp. Bot. , vol.63 , pp. 2729-2737
    • Yamaguchi, N.1
  • 49
    • 70349213941 scopus 로고    scopus 로고
    • Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings
    • Zheng L.Q., et al. Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol. 2009, 151:262-274.
    • (2009) Plant Physiol. , vol.151 , pp. 262-274
    • Zheng, L.Q.1
  • 50
    • 33751573050 scopus 로고    scopus 로고
    • Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1
    • Kim S.A., et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 2006, 314:1295-1298.
    • (2006) Science , vol.314 , pp. 1295-1298
    • Kim, S.A.1
  • 51
    • 0035999899 scopus 로고    scopus 로고
    • Determination of the elemental composition of mature wheat grain using a modified secondary ion mass spectrometer (SIMS)
    • Heard P.J., et al. Determination of the elemental composition of mature wheat grain using a modified secondary ion mass spectrometer (SIMS). Plant J. 2002, 30:237-245.
    • (2002) Plant J. , vol.30 , pp. 237-245
    • Heard, P.J.1
  • 52
    • 84857033520 scopus 로고    scopus 로고
    • Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry
    • Moore K.L., et al. Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry. J. Cereal Sci. 2012, 55:183-187.
    • (2012) J. Cereal Sci. , vol.55 , pp. 183-187
    • Moore, K.L.1
  • 53
    • 78650343139 scopus 로고    scopus 로고
    • Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat
    • Wang Y.X., et al. Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat. New Phytol. 2011, 189:428-437.
    • (2011) New Phytol. , vol.189 , pp. 428-437
    • Wang, Y.X.1
  • 54
    • 68849108133 scopus 로고    scopus 로고
    • Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin
    • Wirth J., et al. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol. J. 2009, 7:631-644.
    • (2009) Plant Biotechnol. J. , vol.7 , pp. 631-644
    • Wirth, J.1
  • 55
    • 71049152353 scopus 로고    scopus 로고
    • In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry
    • Clode P.L., et al. In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol. 2009, 151:1751-1757.
    • (2009) Plant Physiol. , vol.151 , pp. 1751-1757
    • Clode, P.L.1
  • 56
    • 84885427024 scopus 로고    scopus 로고
    • Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (Triticum aestivum)
    • Jones D.L., et al. Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (Triticum aestivum). New Phytol. 2013, 200:796-807.
    • (2013) New Phytol. , vol.200 , pp. 796-807
    • Jones, D.L.1
  • 57
    • 75949106767 scopus 로고    scopus 로고
    • Tracing cationic nutrients from xylem into stem tissue of French bean by stable isotope tracers and cryo-secondary ion mass spectrometry
    • Metzner R., et al. Tracing cationic nutrients from xylem into stem tissue of French bean by stable isotope tracers and cryo-secondary ion mass spectrometry. Plant Physiol. 2010, 152:1030-1043.
    • (2010) Plant Physiol. , vol.152 , pp. 1030-1043
    • Metzner, R.1
  • 58
    • 77957726128 scopus 로고    scopus 로고
    • Contrasting dynamics of water and mineral nutrients in stems shown by stable isotope tracers and cryo-SIMS
    • Metzner R., et al. Contrasting dynamics of water and mineral nutrients in stems shown by stable isotope tracers and cryo-SIMS. Plant Cell Environ. 2010, 33:1393-1407.
    • (2010) Plant Cell Environ. , vol.33 , pp. 1393-1407
    • Metzner, R.1
  • 59
    • 84886778405 scopus 로고    scopus 로고
    • Speciation and distribution of arsenic in the nonhyperaccumulator macrophyte Ceratophyllum demersum
    • Mishra S., et al. Speciation and distribution of arsenic in the nonhyperaccumulator macrophyte Ceratophyllum demersum. Plant Physiol. 2013, 163:1396-1408.
    • (2013) Plant Physiol. , vol.163 , pp. 1396-1408
    • Mishra, S.1
  • 60
    • 59849099112 scopus 로고    scopus 로고
    • Arsenic uptake and metabolism in plants
    • Zhao F.J., et al. Arsenic uptake and metabolism in plants. New Phytol. 2009, 181:777-794.
    • (2009) New Phytol. , vol.181 , pp. 777-794
    • Zhao, F.J.1
  • 61
    • 0033998127 scopus 로고    scopus 로고
    • Reduction and coordination of arsenic in Indian mustard
    • Pickering I.J., et al. Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 2000, 122:1171-1177.
    • (2000) Plant Physiol. , vol.122 , pp. 1171-1177
    • Pickering, I.J.1
  • 62
    • 41149179753 scopus 로고    scopus 로고
    • Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC-ICP-MS and LC-ES-MS/ICP-MS with XANES/EXAFS in analysis of Thunbergia alata
    • Bluemlein K., et al. Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC-ICP-MS and LC-ES-MS/ICP-MS with XANES/EXAFS in analysis of Thunbergia alata. Anal. Bioanal. Chem. 2008, 390:1739-1751.
    • (2008) Anal. Bioanal. Chem. , vol.390 , pp. 1739-1751
    • Bluemlein, K.1
  • 63
    • 80052775682 scopus 로고    scopus 로고
    • Localization and speciation of arsenic in soil and desert plant Parkinsonia florida using mu XRF and mu XANES
    • Castillo-Michel H., et al. Localization and speciation of arsenic in soil and desert plant Parkinsonia florida using mu XRF and mu XANES. Environ. Sci. Technol. 2011, 45:7848-7854.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 7848-7854
    • Castillo-Michel, H.1
  • 64
    • 0037442951 scopus 로고    scopus 로고
    • XAS speciation of arsenic in a hyper-accumulating fern
    • Webb S.M., et al. XAS speciation of arsenic in a hyper-accumulating fern. Environ. Sci. Technol. 2003, 37:754-760.
    • (2003) Environ. Sci. Technol. , vol.37 , pp. 754-760
    • Webb, S.M.1
  • 65
    • 0036829494 scopus 로고    scopus 로고
    • Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata
    • Lombi E., et al. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol. 2002, 156:195-203.
    • (2002) New Phytol. , vol.156 , pp. 195-203
    • Lombi, E.1
  • 66
    • 84895066782 scopus 로고    scopus 로고
    • Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging
    • Kopittke P.M., et al. Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging. New Phytol. 2013, 10.1111/nph.12595.
    • (2013) New Phytol.
    • Kopittke, P.M.1
  • 67
    • 84878661838 scopus 로고    scopus 로고
    • Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: verification using XANES
    • Maher W., et al. Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: verification using XANES. Environ. Sci. Technol. 2013, 47:5821-5827.
    • (2013) Environ. Sci. Technol. , vol.47 , pp. 5821-5827
    • Maher, W.1
  • 68
    • 0029201592 scopus 로고
    • Mechanisms of cadmium mobility and accumulation in Indian mustard
    • Salt D.E., et al. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 1995, 109:1427-1433.
    • (1995) Plant Physiol. , vol.109 , pp. 1427-1433
    • Salt, D.E.1
  • 69
    • 1342308499 scopus 로고    scopus 로고
    • Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy
    • Küpper H., et al. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol. 2004, 134:748-757.
    • (2004) Plant Physiol. , vol.134 , pp. 748-757
    • Küpper, H.1
  • 70
    • 84860263321 scopus 로고    scopus 로고
    • Cd speciation and localization in the hyperaccumulator Arabidopsis halleri
    • Huguet S., et al. Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ. Exp. Bot. 2012, 82:54-65.
    • (2012) Environ. Exp. Bot. , vol.82 , pp. 54-65
    • Huguet, S.1
  • 71
    • 82755176141 scopus 로고    scopus 로고
    • Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii
    • Tian S.K., et al. Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol. 2011, 157:1914-1925.
    • (2011) Plant Physiol. , vol.157 , pp. 1914-1925
    • Tian, S.K.1
  • 72
    • 77952426754 scopus 로고    scopus 로고
    • Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy
    • Vogel-Mikus K., et al. Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant Soil 2010, 331:439-451.
    • (2010) Plant Soil , vol.331 , pp. 439-451
    • Vogel-Mikus, K.1
  • 73
    • 0033104854 scopus 로고    scopus 로고
    • Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy
    • Salt D.E., et al. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Technol. 1999, 33:713-717.
    • (1999) Environ. Sci. Technol. , vol.33 , pp. 713-717
    • Salt, D.E.1
  • 74
    • 70350135031 scopus 로고    scopus 로고
    • Zinc distribution and speciation in Arabidopsis halleri × Arabidopsis lyrata progenies presenting various zinc accumulation capacities
    • Sarret G., et al. Zinc distribution and speciation in Arabidopsis halleri × Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytol. 2009, 184:581-595.
    • (2009) New Phytol. , vol.184 , pp. 581-595
    • Sarret, G.1
  • 75
    • 84878716927 scopus 로고    scopus 로고
    • Iron and zinc complexation in wild-type and ferritin-expressing wheat grain: implications for mineral transport into developing grain
    • Neal A.L., et al. Iron and zinc complexation in wild-type and ferritin-expressing wheat grain: implications for mineral transport into developing grain. J. Biol. Inorg. Chem. 2013, 18:557-570.
    • (2013) J. Biol. Inorg. Chem. , vol.18 , pp. 557-570
    • Neal, A.L.1
  • 76
    • 84879685692 scopus 로고    scopus 로고
    • Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms
    • Ryan B.M., et al. Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytol. 2013, 199:367-378.
    • (2013) New Phytol. , vol.199 , pp. 367-378
    • Ryan, B.M.1
  • 77
    • 70349642114 scopus 로고    scopus 로고
    • Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype)
    • Mijovilovich A., et al. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype). Plant Physiol. 2009, 151:715-731.
    • (2009) Plant Physiol. , vol.151 , pp. 715-731
    • Mijovilovich, A.1
  • 78
    • 84860689729 scopus 로고    scopus 로고
    • The fictile coordination chemistry of cuprous-thiolate sites in copper chaperones
    • Pushie M.J., et al. The fictile coordination chemistry of cuprous-thiolate sites in copper chaperones. Biochim. Biophys. Acta Bioenerg. 2012, 1817:938-947.
    • (2012) Biochim. Biophys. Acta Bioenerg. , vol.1817 , pp. 938-947
    • Pushie, M.J.1
  • 79
    • 70349644996 scopus 로고    scopus 로고
    • Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator
    • Küpper H., et al. Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol. 2009, 151:702-714.
    • (2009) Plant Physiol. , vol.151 , pp. 702-714
    • Küpper, H.1
  • 80
    • 33748172093 scopus 로고    scopus 로고
    • A high-throughput determination of metal concentrations in whole intact Arabidopsis thaliana seeds using synchrotron-based X-ray fluorescence spectroscopy
    • Young L.W., et al. A high-throughput determination of metal concentrations in whole intact Arabidopsis thaliana seeds using synchrotron-based X-ray fluorescence spectroscopy. J. Synchr. Radiat. 2006, 13:304-313.
    • (2006) J. Synchr. Radiat. , vol.13 , pp. 304-313
    • Young, L.W.1
  • 81
    • 0034718596 scopus 로고    scopus 로고
    • Quantitative, chemically specific imaging of selenium transformation in plants
    • Pickering I.J., et al. Quantitative, chemically specific imaging of selenium transformation in plants. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:10717-10722.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 10717-10722
    • Pickering, I.J.1
  • 82
    • 77953214480 scopus 로고    scopus 로고
    • Reduced As components in highly oxidized environments: evidence from full spectral XANES imaging using the Maia massively parallel detector
    • Etschmann B.E., et al. Reduced As components in highly oxidized environments: evidence from full spectral XANES imaging using the Maia massively parallel detector. Am. Mineral. 2010, 95:884-887.
    • (2010) Am. Mineral. , vol.95 , pp. 884-887
    • Etschmann, B.E.1
  • 83
    • 79960743396 scopus 로고    scopus 로고
    • Imaging of elements and molecules in biological tissues and cells in the low-micrometer and nanometer range
    • Wu B., Becker J.S. Imaging of elements and molecules in biological tissues and cells in the low-micrometer and nanometer range. Int. J. Mass Spectrom. 2011, 307:112-122.
    • (2011) Int. J. Mass Spectrom. , vol.307 , pp. 112-122
    • Wu, B.1    Becker, J.S.2
  • 84
    • 80052449864 scopus 로고    scopus 로고
    • Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm
    • Johnson A.A.T., et al. Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS ONE 2011, 6:e24476.
    • (2011) PLoS ONE , vol.6
    • Johnson, A.A.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.