메뉴 건너뛰기




Volumn 9, Issue C, 2014, Pages 146-165

Approximate Bayesian inference for spatial econometrics models

Author keywords

Bayesian inference; INLA; Spatial econometrics

Indexed keywords


EID: 84894236219     PISSN: 22116753     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.spasta.2014.01.002     Document Type: Article
Times cited : (56)

References (24)
  • 2
    • 77954353760 scopus 로고    scopus 로고
    • Thirty years of spatial econometrics
    • Anselin L. Thirty years of spatial econometrics. Pap. Reg. Sci. 2010, 89(1):3-25.
    • (2010) Pap. Reg. Sci. , vol.89 , Issue.1 , pp. 3-25
    • Anselin, L.1
  • 3
    • 28344449679 scopus 로고
    • Bayesian image restoration, with two applications in spatial statistics
    • Besag J., York J., Mollie A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Statist. Math. 1991, 43(1):1-59.
    • (1991) Ann. Inst. Statist. Math. , vol.43 , Issue.1 , pp. 1-59
    • Besag, J.1    York, J.2    Mollie, A.3
  • 5
    • 84857641727 scopus 로고    scopus 로고
    • Approximate Bayesian inference for large spatial datasets using predictive process models
    • Eidsvik J., Finley A.O., Banerjee S., Rue H. Approximate Bayesian inference for large spatial datasets using predictive process models. Comput. Statist. Data Anal. 2012, 56(6):1362-1380.
    • (2012) Comput. Statist. Data Anal. , vol.56 , Issue.6 , pp. 1362-1380
    • Eidsvik, J.1    Finley, A.O.2    Banerjee, S.3    Rue, H.4
  • 6
    • 84923213139 scopus 로고    scopus 로고
    • Spatial models using Laplace approximation methods
    • Springer, Berlin, Heidelberg, M.M. Fischer, P. Nijkamp (Eds.)
    • Gómez-Rubio V., Bivand R.S., Rue H. Spatial models using Laplace approximation methods. Handbook of Regional Science 2014, 1401-1417. Springer, Berlin, Heidelberg. M.M. Fischer, P. Nijkamp (Eds.).
    • (2014) Handbook of Regional Science , pp. 1401-1417
    • Gómez-Rubio, V.1    Bivand, R.S.2    Rue, H.3
  • 7
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green P. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995, 4(82):711-732.
    • (1995) Biometrika , vol.4 , Issue.82 , pp. 711-732
    • Green, P.1
  • 8
    • 85041099141 scopus 로고    scopus 로고
    • Faster maximum likelihood estimation of very large spatial autoregressive models: an extension of the Smirnov-Anselin result
    • Griffith D.A. Faster maximum likelihood estimation of very large spatial autoregressive models: an extension of the Smirnov-Anselin result. J. Stat. Comput. Simul. 2004, 74(12):855-866.
    • (2004) J. Stat. Comput. Simul. , vol.74 , Issue.12 , pp. 855-866
    • Griffith, D.A.1
  • 9
    • 6944246046 scopus 로고    scopus 로고
    • A spatial filtering specification for the autologistic model
    • Griffith D.A. A spatial filtering specification for the autologistic model. Environ. Plann. A 2004, 36:1791-1811.
    • (2004) Environ. Plann. A , vol.36 , pp. 1791-1811
    • Griffith, D.A.1
  • 15
    • 79961050814 scopus 로고    scopus 로고
    • An explicit link between Gaussian fields and Gaussian Markov random fields: the SPDE approach (with discussion)
    • Lindgren F., Rue H., Lindström J. An explicit link between Gaussian fields and Gaussian Markov random fields: the SPDE approach (with discussion). J. Roy. Statist. Soc. Ser. B 2011, 73(4):423-498.
    • (2011) J. Roy. Statist. Soc. Ser. B , vol.73 , Issue.4 , pp. 423-498
    • Lindgren, F.1    Rue, H.2    Lindström, J.3
  • 16
    • 0001151136 scopus 로고
    • On multimodality of the likelihood in the spatial linear model
    • Mardia K.V., Watkins A.J. On multimodality of the likelihood in the spatial linear model. Biometrika 1989, 76(2):289-295.
    • (1989) Biometrika , vol.76 , Issue.2 , pp. 289-295
    • Mardia, K.V.1    Watkins, A.J.2
  • 18
    • 0010888636 scopus 로고    scopus 로고
    • Using the spatial configuration of the data to improve estimation
    • Pace R.K., Gilley O. Using the spatial configuration of the data to improve estimation. J. Real Estate Finance Econom. 1997, 14:333-340.
    • (1997) J. Real Estate Finance Econom. , vol.14 , pp. 333-340
    • Pace, R.K.1    Gilley, O.2
  • 19
    • 84914179053 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria
    • R: A Language and Environment for Statistical Computing 2013, R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria.
    • (2013) R: A Language and Environment for Statistical Computing
  • 21
    • 0000940729 scopus 로고
    • Facilitating the Gibbs sampler: the Gibbs stopper and the griddy-Gibbs sampler
    • Ritter C., Tanner M.A. Facilitating the Gibbs sampler: the Gibbs stopper and the griddy-Gibbs sampler. J. Amer. Statist. Assoc. 1992, 87(419):861-868.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , Issue.419 , pp. 861-868
    • Ritter, C.1    Tanner, M.A.2
  • 22
    • 79958717589 scopus 로고    scopus 로고
    • Sensitivity analysis in Bayesian generalized linear mixed models for binary data
    • Roos M., Held L. Sensitivity analysis in Bayesian generalized linear mixed models for binary data. Bayesian Anal. 2011, 6(2):259-278.
    • (2011) Bayesian Anal. , vol.6 , Issue.2 , pp. 259-278
    • Roos, M.1    Held, L.2
  • 23
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue H., Martino S., Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. Roy. Statist. Soc. Ser. B 2009, 71(Part 2):319-392.
    • (2009) J. Roy. Statist. Soc. Ser. B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.