메뉴 건너뛰기




Volumn 8, Issue FEB, 2014, Pages

Equation-oriented specification of neural models for simulations

Author keywords

Computational neuroscience; Neuroscience; Python; Simulation; Software

Indexed keywords

N METHYL DEXTRO ASPARTIC ACID RECEPTOR;

EID: 84894081828     PISSN: 16625196     EISSN: None     Source Type: Journal    
DOI: 10.3389/fninf.2014.00006     Document Type: Article
Times cited : (130)

References (26)
  • 1
    • 33745838260 scopus 로고    scopus 로고
    • Exact simulation of integrate-and-fire models with synaptic conductances
    • doi: 10.1162/neco.2006.18.8.2004
    • Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances. Neural Comput. 18, 2004-2027. doi: 10.1162/neco.2006.18.8.2004
    • (2006) Neural Comput , vol.18 , pp. 2004-2027
    • Brette, R.1
  • 2
    • 84870658741 scopus 로고    scopus 로고
    • On the design of script languages for neural simulation
    • doi: 10.3109/0954898X.2012.716902
    • Brette, R. (2012). On the design of script languages for neural simulation. Netw. Comp. Neural 23, 150-156. doi: 10.3109/0954898X.2012.716902
    • (2012) Netw. Comp. Neural , vol.23 , pp. 150-156
    • Brette, R.1
  • 3
    • 79958292145 scopus 로고    scopus 로고
    • Vectorized algorithms for spiking neural network simulation
    • doi: 10.1162/NECO_a_00123
    • Brette, R., and Goodman, D. F. M. (2011). Vectorized algorithms for spiking neural network simulation. Neural Comput. 23, 1503-1535. doi: 10.1162/NECO_a_00123
    • (2011) Neural Comput , vol.23 , pp. 1503-1535
    • Brette, R.1    Goodman, D.F.M.2
  • 4
    • 35248866865 scopus 로고    scopus 로고
    • Simulation of networks of spiking neurons: A review of tools and strategies
    • doi: 10.1007/s10827-007-0038-6
    • Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23, 349-398. doi: 10.1007/s10827-007-0038-6
    • (2007) J. Comput. Neurosci , vol.23 , pp. 349-398
    • Brette, R.1    Rudolph, M.2    Carnevale, T.3    Hines, M.4    Beeman, D.5    Bower, J.M.6
  • 5
    • 84924618721 scopus 로고    scopus 로고
    • Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511541612
    • Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511541612
    • (2006) The NEURON Book
    • Carnevale, N.T.1    Hines, M.L.2
  • 7
    • 84864222718 scopus 로고    scopus 로고
    • Automated capture of experiment context for easier reproducibility in computational research
    • doi: 10.1109/MCSE.2012.41
    • Davison, A. (2012). Automated capture of experiment context for easier reproducibility in computational research. Comput. Sci. Eng. 14, 48-56. doi: 10.1109/MCSE.2012.41
    • (2012) Comput. Sci. Eng , vol.14 , pp. 48-56
    • Davison, A.1
  • 8
    • 0028490340 scopus 로고
    • Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism
    • doi: 10.1007/BF00961734
    • Destexhe, A., Mainen, Z. F., and Sejnowski, T. J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1, 195-230. doi: 10.1007/BF00961734
    • (1994) J. Comput. Neurosci , vol.1 , pp. 195-230
    • Destexhe, A.1    Mainen, Z.F.2    Sejnowski, T.J.3
  • 9
    • 84865527851 scopus 로고    scopus 로고
    • The connection-set algebra-a novel formalism for the representation of connectivity structure in neuronal network models
    • doi: 10.1007/s12021-012-9146-1
    • Djurfeldt, M. (2012). The connection-set algebra-a novel formalism for the representation of connectivity structure in neuronal network models. Neuroinform 10, 287-304. doi: 10.1007/s12021-012-9146-1
    • (2012) Neuroinform , vol.10 , pp. 287-304
    • Djurfeldt, M.1
  • 10
    • 43949092150 scopus 로고    scopus 로고
    • NEST (NEural simulation tool)
    • doi: 10.4249/scholarpedia.1430
    • Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural simulation tool). Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430
    • (2007) Scholarpedia , vol.2 , pp. 1430
    • Gewaltig, M.-O.1    Diesmann, M.2
  • 11
    • 77955483472 scopus 로고    scopus 로고
    • NeuroML: A language for describing data driven models of neurons and networks with a high degree of biological detail
    • doi: 10.1371/journal.pcbi.1000815
    • Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M., et al. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput. Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815
    • (2010) PLoS Comput. Biol , vol.6
    • Gleeson, P.1    Crook, S.2    Cannon, R.C.3    Hines, M.L.4    Billings, G.O.5    Farinella, M.6
  • 12
    • 84885847922 scopus 로고    scopus 로고
    • Brian: A simulator for spiking neural networks in Python
    • doi: 10.3389/neuro.11.005.2008
    • Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks in Python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008
    • (2008) Front. Neuroinform , vol.2 , pp. 5
    • Goodman, D.1    Brette, R.2
  • 13
    • 78049278797 scopus 로고    scopus 로고
    • Code generation: A strategy for neural network simulators
    • doi: 10.1007/s12021-010-9082-x
    • Goodman, D. F. M. (2010). Code generation: a strategy for neural network simulators. Neuroinform 8, 183-196. doi: 10.1007/s12021-010-9082-x
    • (2010) Neuroinform , vol.8 , pp. 183-196
    • Goodman, D.F.M.1
  • 14
    • 84892640984 scopus 로고    scopus 로고
    • The Brian simulator
    • doi: 10.3389/neuro.01.026.2009
    • Goodman, D. F. M., and Brette, R. (2009). The Brian simulator. Front. Neurosci. 3, 192-197. doi: 10.3389/neuro.01.026.2009
    • (2009) Front. Neurosci , vol.3 , pp. 192-197
    • Goodman, D.F.M.1    Brette, R.2
  • 15
    • 0034180688 scopus 로고    scopus 로고
    • Expanding NEURON's repertoire of mechanisms with NMODL
    • doi: 10.1162/089976600300015475
    • Hines, M. L., and Carnevale, N. T. (2000). Expanding NEURON's repertoire of mechanisms with NMODL. Neural Comput. 12, 995-1007. doi: 10.1162/089976600300015475
    • (2000) Neural Comput , vol.12 , pp. 995-1007
    • Hines, M.L.1    Carnevale, N.T.2
  • 17
    • 84857577674 scopus 로고    scopus 로고
    • Open source computer algebra systems: SymPy
    • doi: 10.1145/2110170.2110185
    • Joyner, D., Čertík, O., Meurer, A., and Granger, B. E. (2012). Open source computer algebra systems: SymPy. ACM Commun. Comput. Algebra. 45, 225-234. doi: 10.1145/2110170.2110185
    • (2012) ACM Commun. Comput. Algebra , vol.45 , pp. 225-234
    • Joyner, D.1    Čertík, O.2    Meurer, A.3    Granger, B.E.4
  • 18
    • 34249703480 scopus 로고    scopus 로고
    • Spike-timing-dependent plasticity in balanced random networks
    • doi: 10.1162/neco.2007.19.6.1437
    • Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent plasticity in balanced random networks. Neural Comput. 19, 1437-1467. doi: 10.1162/neco.2007.19.6.1437
    • (2007) Neural Comput , vol.19 , pp. 1437-1467
    • Morrison, A.1    Aertsen, A.2    Diesmann, M.3
  • 19
    • 70049083053 scopus 로고    scopus 로고
    • Towards reproducible descriptions of neuronal network models
    • doi: 10.1371/journal.pcbi.1000456
    • Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible descriptions of neuronal network models. PLoS Comput. Biol. 5:e1000456. doi: 10.1371/journal.pcbi.1000456
    • (2009) PLoS Comput. Biol , vol.5
    • Nordlie, E.1    Gewaltig, M.-O.2    Plesser, H.E.3
  • 20
    • 34247500374 scopus 로고    scopus 로고
    • Python for scientific computing
    • doi: 10.1109/MCSE.2007.58
    • Oliphant, T. E. (2007). Python for scientific computing. Comput. Sci. Eng. 9, 10-20. doi: 10.1109/MCSE.2007.58
    • (2007) Comput. Sci. Eng , vol.9 , pp. 10-20
    • Oliphant, T.E.1
  • 21
    • 34247481878 scopus 로고    scopus 로고
    • IPython: A system for interactive scientific computing
    • doi: 10.1109/MCSE.2007.53
    • Pérez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21-29. doi: 10.1109/MCSE.2007.53
    • (2007) Comput. Sci. Eng , vol.9 , pp. 21-29
    • Pérez, F.1    Granger, B.E.2
  • 22
    • 84870671132 scopus 로고    scopus 로고
    • NineML: The network interchange for neuroscience modeling language
    • doi: 10.1186/1471-2202-12-S1-P330
    • Raikov, I., Cannon, R., Clewley, R., Cornelis, H., Davison, A., De Schutter, E., et al. (2011). NineML: the network interchange for neuroscience modeling language. BMC Neurosci. 12(Suppl. 1):P330. doi: 10.1186/1471-2202-12-S1-P330
    • (2011) BMC Neurosci , vol.12 , Issue.SUPPL. 1
    • Raikov, I.1    Cannon, R.2    Clewley, R.3    Cornelis, H.4    Davison, A.5    de Schutter, E.6
  • 23
    • 0033220632 scopus 로고    scopus 로고
    • Exact digital simulation of time-invariant linear systems with applications to neuronal modeling
    • doi: 10.1007/s004220050570
    • Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol. Cybern. 81, 381-402. doi: 10.1007/s004220050570
    • (1999) Biol. Cybern , vol.81 , pp. 381-402
    • Rotter, S.1    Diesmann, M.2
  • 24
    • 0035950280 scopus 로고    scopus 로고
    • Cortical development and remapping through spike timing-dependent plasticity
    • doi: 10.1016/S0896-6273(01)00451-2
    • Song, S., and Abbott, L. F. (2001). Cortical development and remapping through spike timing-dependent plasticity. Neuron 32, 339-350. doi: 10.1016/S0896-6273(01)00451-2
    • (2001) Neuron , vol.32 , pp. 339-350
    • Song, S.1    Abbott, L.F.2
  • 25
    • 0033860923 scopus 로고    scopus 로고
    • Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
    • doi: 10.1038/78829
    • Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919-926. doi: 10.1038/78829
    • (2000) Nat. Neurosci , vol.3 , pp. 919-926
    • Song, S.1    Miller, K.D.2    Abbott, L.F.3
  • 26
    • 0037028039 scopus 로고    scopus 로고
    • Probabilistic decision making by slow reverberation in cortical circuits
    • doi: 10.1016/S0896-6273(02)01092-9
    • Wang, X.-J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955-968. doi: 10.1016/S0896-6273(02)01092-9
    • (2002) Neuron , vol.36 , pp. 955-968
    • Wang, X.-J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.