메뉴 건너뛰기




Volumn 2013, Issue , 2013, Pages

Multiple solutions of a p-Laplacian model involving a fractional derivative

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84893948671     PISSN: 16871839     EISSN: 16871847     Source Type: Journal    
DOI: 10.1186/1687-1847-2013-126     Document Type: Article
Times cited : (80)

References (19)
  • 1
    • 77958009389 scopus 로고    scopus 로고
    • A class of fractional evolution equations and optimal controls
    • Wang, J, Zhou, Y: A class of fractional evolution equations and optimal controls. Nonlinear Anal., Real World Appl. 12, 262-272 (2011)
    • (2011) Nonlinear Anal. Real World Appl. , vol.12 , pp. 262-272
    • Wang, J.1    Zhou, Y.2
  • 2
    • 74149093181 scopus 로고    scopus 로고
    • Existence of mild solutions for fractional neutral evolution equations
    • Zhou, Y, Jiao, F: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063-1077 (2010)
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1063-1077
    • Zhou, Y.1    Jiao, F.2
  • 3
    • 79961010111 scopus 로고    scopus 로고
    • Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls
    • Wang, J, Zhou, Y, Wei, W, Xu, H: Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls. Comput. Math. Appl. 62, 1427-1441 (2011)
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1427-1441
    • Wang, J.1    Zhou, Y.2    Wei, W.3    Xu, H.4
  • 4
    • 71649083074 scopus 로고    scopus 로고
    • On positive solutions of a nonlocal fractional boundary value problem
    • Bai, Z: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, 916-924 (2010)
    • (2010) Nonlinear Anal. , vol.72 , pp. 916-924
    • Bai, Z.1
  • 5
    • 78649686300 scopus 로고    scopus 로고
    • Existence of solutions for a nonlinear fractional order differential equation. Electron
    • Kaufmann, E, Yao, KD: Existence of solutions for a nonlinear fractional order differential equation. Electron. J. Qual. Theory Differ. Equ. 71, 1-9 (2009)
    • (2009) J. Qual. Theory Differ. Equ. , vol.71 , pp. 1-9
    • Kaufmann, E.1    Yao, K.D.2
  • 6
    • 79961001222 scopus 로고    scopus 로고
    • Three nonnegative solutions for fractional differential equations with integral boundary conditions
    • Jia, M, Liu, X: Three nonnegative solutions for fractional differential equations with integral boundary conditions. Comput. Math. Appl. 62, 1405-1412 (2011)
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1405-1412
    • Jia, M.1    Liu, X.2
  • 7
    • 77957591180 scopus 로고    scopus 로고
    • Existence and uniqueness of solution for fractional differential equations with integral boundary conditions
    • Liu, X, Jia, M, Wu, B: Existence and uniqueness of solution for fractional differential equations with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 69, 1-10 (2009)
    • (2009) Electron. J. Qual. Theory Differ. Equ. , vol.69 , pp. 1-10
    • Liu, X.1    Jia, M.2    Wu, B.3
  • 8
    • 82255193938 scopus 로고    scopus 로고
    • The short memory principle for solving abel differential equation of fractional order
    • Xu, Y, He, Z: The short memory principle for solving Abel differential equation of fractional order. Comput. Math. Appl. 62, 4796-4805 (2011)
    • (2011) Comput. Math. Appl. , vol.62 , pp. 4796-4805
    • Xu, Y.1    He, Z.2
  • 9
    • 63449141522 scopus 로고    scopus 로고
    • Twin positive solutions for p-laplacian nonlinear neumann problems via variational and degree theoretic methods
    • Agarwal, RP, Filippakis, M, O'Regan, D, Papageorgiou, NS: Twin positive solutions for p-Laplacian nonlinear Neumann problems via variational and degree theoretic methods. J. Nonlinear Convex Anal. 9, 1-23 (2008)
    • (2008) J. Nonlinear Convex Anal. , vol.9 , pp. 1-23
    • Agarwal, R.P.1    Filippakis, M.2    O'Regan, D.3    Papageorgiou, N.S.4
  • 10
    • 55549102645 scopus 로고    scopus 로고
    • Periodic solutions for a fourth-order rayleigh type p-laplacian delay equation
    • Cheng, Z, Ren, J: Periodic solutions for a fourth-order Rayleigh type p-Laplacian delay equation. Nonlinear Anal. 70, 516-523 (2009)
    • (2009) Nonlinear Anal. , vol.70 , pp. 516-523
    • Cheng, Z.1    Ren, J.2
  • 11
    • 54049097052 scopus 로고    scopus 로고
    • A multiplicity result for p-laplacian boundary value problems via critical points theorem
    • Du, Z, Lin, X, Tisdell, CC: A multiplicity result for p-Laplacian boundary value problems via critical points theorem. Appl. Math. Comput. 205, 231-237 (2008)
    • (2008) Appl. Math. Comput. , vol.205 , pp. 231-237
    • Du, Z.1    Lin, X.2    Tisdell, C.C.3
  • 12
    • 44149093820 scopus 로고    scopus 로고
    • Three positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales
    • DOI 10.1016/j.na.2007.06.001, PII S0362546X07003914
    • He, Z, Long, Z: Three positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales. Nonlinear Anal. 69, 569-578 (2008) (Pubitemid 351718290)
    • (2008) Nonlinear Analysis, Theory, Methods and Applications , vol.69 , Issue.2 , pp. 569-578
    • He, Z.1    Long, Z.2
  • 13
    • 79961029650 scopus 로고    scopus 로고
    • Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations
    • Yang, X, Wei, Z, Dong, W: Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 85-92 (2012)
    • (2012) Commun. Nonlinear Sci. Numer. Simul. , vol.17 , pp. 85-92
    • Yang, X.1    Wei, Z.2    Dong, W.3
  • 14
    • 77950189007 scopus 로고    scopus 로고
    • Multiple solutions for fractional differential equations with nonlinear boundary conditions
    • Liu, X, Jia, M: Multiple solutions for fractional differential equations with nonlinear boundary conditions. Comput. Math. Appl. 59, 2880-2886 (2010)
    • (2010) Comput. Math. Appl. , vol.59 , pp. 2880-2886
    • Liu, X.1    Jia, M.2
  • 15
    • 56949083915 scopus 로고    scopus 로고
    • Positive solutions of mixed type multi-point non-homogeneous bvps for p-laplacian equations
    • Liu, Y: Positive solutions of mixed type multi-point non-homogeneous BVPs for p-Laplacian equations. Appl. Math. Comput. 206, 796-805 (2008)
    • (2008) Appl. Math. Comput. , vol.206 , pp. 796-805
    • Liu, Y.1
  • 16
    • 79961001222 scopus 로고    scopus 로고
    • On the solvability of a fractional differential equation model involving the p-laplacian operator
    • Liu, X, Jia, M, Xiang, X: On the solvability of a fractional differential equation model involving the p-Laplacian operator. Comput. Math. Appl. 62, 1405-1412 (2011)
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1405-1412
    • Liu, X.1    Jia, M.2    Xiang, X.3
  • 17
    • 84862800322 scopus 로고    scopus 로고
    • A boundary value problem for fractional differential equation with p-laplacian operator at resonance
    • Chen, T, Liu, W, Hu, Z: A boundary value problem for fractional differential equation with p-Laplacian operator at resonance. Nonlinear Anal. 75, 3210-3217 (2012)
    • (2012) Nonlinear Anal. , vol.75 , pp. 3210-3217
    • Chen, T.1    Liu, W.2    Hu, Z.3
  • 19
    • 0035426671 scopus 로고    scopus 로고
    • Three positive fixed points of nonlinear operators on ordered Banach spaces
    • DOI 10.1016/S0898-1221(01)00156-0, PII S0898122101001560
    • Avery, RI, Peterson, AC: Three positive fixed points of nonlinear operators on ordered Banach spaces. Comput. Math. Appl. 42, 313-322 (2001) (Pubitemid 32639403)
    • (2001) Computers and Mathematics with Applications , vol.42 , Issue.3-5 , pp. 313-322
    • Avery, R.I.1    Peterson, A.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.