-
1
-
-
77958009389
-
A class of fractional evolution equations and optimal controls
-
Wang, J, Zhou, Y: A class of fractional evolution equations and optimal controls. Nonlinear Anal., Real World Appl. 12, 262-272 (2011)
-
(2011)
Nonlinear Anal. Real World Appl.
, vol.12
, pp. 262-272
-
-
Wang, J.1
Zhou, Y.2
-
2
-
-
74149093181
-
Existence of mild solutions for fractional neutral evolution equations
-
Zhou, Y, Jiao, F: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063-1077 (2010)
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1063-1077
-
-
Zhou, Y.1
Jiao, F.2
-
3
-
-
79961010111
-
Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls
-
Wang, J, Zhou, Y, Wei, W, Xu, H: Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls. Comput. Math. Appl. 62, 1427-1441 (2011)
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 1427-1441
-
-
Wang, J.1
Zhou, Y.2
Wei, W.3
Xu, H.4
-
4
-
-
71649083074
-
On positive solutions of a nonlocal fractional boundary value problem
-
Bai, Z: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, 916-924 (2010)
-
(2010)
Nonlinear Anal.
, vol.72
, pp. 916-924
-
-
Bai, Z.1
-
5
-
-
78649686300
-
Existence of solutions for a nonlinear fractional order differential equation. Electron
-
Kaufmann, E, Yao, KD: Existence of solutions for a nonlinear fractional order differential equation. Electron. J. Qual. Theory Differ. Equ. 71, 1-9 (2009)
-
(2009)
J. Qual. Theory Differ. Equ.
, vol.71
, pp. 1-9
-
-
Kaufmann, E.1
Yao, K.D.2
-
6
-
-
79961001222
-
Three nonnegative solutions for fractional differential equations with integral boundary conditions
-
Jia, M, Liu, X: Three nonnegative solutions for fractional differential equations with integral boundary conditions. Comput. Math. Appl. 62, 1405-1412 (2011)
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 1405-1412
-
-
Jia, M.1
Liu, X.2
-
7
-
-
77957591180
-
Existence and uniqueness of solution for fractional differential equations with integral boundary conditions
-
Liu, X, Jia, M, Wu, B: Existence and uniqueness of solution for fractional differential equations with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 69, 1-10 (2009)
-
(2009)
Electron. J. Qual. Theory Differ. Equ.
, vol.69
, pp. 1-10
-
-
Liu, X.1
Jia, M.2
Wu, B.3
-
8
-
-
82255193938
-
The short memory principle for solving abel differential equation of fractional order
-
Xu, Y, He, Z: The short memory principle for solving Abel differential equation of fractional order. Comput. Math. Appl. 62, 4796-4805 (2011)
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 4796-4805
-
-
Xu, Y.1
He, Z.2
-
9
-
-
63449141522
-
Twin positive solutions for p-laplacian nonlinear neumann problems via variational and degree theoretic methods
-
Agarwal, RP, Filippakis, M, O'Regan, D, Papageorgiou, NS: Twin positive solutions for p-Laplacian nonlinear Neumann problems via variational and degree theoretic methods. J. Nonlinear Convex Anal. 9, 1-23 (2008)
-
(2008)
J. Nonlinear Convex Anal.
, vol.9
, pp. 1-23
-
-
Agarwal, R.P.1
Filippakis, M.2
O'Regan, D.3
Papageorgiou, N.S.4
-
10
-
-
55549102645
-
Periodic solutions for a fourth-order rayleigh type p-laplacian delay equation
-
Cheng, Z, Ren, J: Periodic solutions for a fourth-order Rayleigh type p-Laplacian delay equation. Nonlinear Anal. 70, 516-523 (2009)
-
(2009)
Nonlinear Anal.
, vol.70
, pp. 516-523
-
-
Cheng, Z.1
Ren, J.2
-
11
-
-
54049097052
-
A multiplicity result for p-laplacian boundary value problems via critical points theorem
-
Du, Z, Lin, X, Tisdell, CC: A multiplicity result for p-Laplacian boundary value problems via critical points theorem. Appl. Math. Comput. 205, 231-237 (2008)
-
(2008)
Appl. Math. Comput.
, vol.205
, pp. 231-237
-
-
Du, Z.1
Lin, X.2
Tisdell, C.C.3
-
12
-
-
44149093820
-
Three positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales
-
DOI 10.1016/j.na.2007.06.001, PII S0362546X07003914
-
He, Z, Long, Z: Three positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales. Nonlinear Anal. 69, 569-578 (2008) (Pubitemid 351718290)
-
(2008)
Nonlinear Analysis, Theory, Methods and Applications
, vol.69
, Issue.2
, pp. 569-578
-
-
He, Z.1
Long, Z.2
-
13
-
-
79961029650
-
Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations
-
Yang, X, Wei, Z, Dong, W: Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 85-92 (2012)
-
(2012)
Commun. Nonlinear Sci. Numer. Simul.
, vol.17
, pp. 85-92
-
-
Yang, X.1
Wei, Z.2
Dong, W.3
-
14
-
-
77950189007
-
Multiple solutions for fractional differential equations with nonlinear boundary conditions
-
Liu, X, Jia, M: Multiple solutions for fractional differential equations with nonlinear boundary conditions. Comput. Math. Appl. 59, 2880-2886 (2010)
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 2880-2886
-
-
Liu, X.1
Jia, M.2
-
15
-
-
56949083915
-
Positive solutions of mixed type multi-point non-homogeneous bvps for p-laplacian equations
-
Liu, Y: Positive solutions of mixed type multi-point non-homogeneous BVPs for p-Laplacian equations. Appl. Math. Comput. 206, 796-805 (2008)
-
(2008)
Appl. Math. Comput.
, vol.206
, pp. 796-805
-
-
Liu, Y.1
-
16
-
-
79961001222
-
On the solvability of a fractional differential equation model involving the p-laplacian operator
-
Liu, X, Jia, M, Xiang, X: On the solvability of a fractional differential equation model involving the p-Laplacian operator. Comput. Math. Appl. 62, 1405-1412 (2011)
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 1405-1412
-
-
Liu, X.1
Jia, M.2
Xiang, X.3
-
17
-
-
84862800322
-
A boundary value problem for fractional differential equation with p-laplacian operator at resonance
-
Chen, T, Liu, W, Hu, Z: A boundary value problem for fractional differential equation with p-Laplacian operator at resonance. Nonlinear Anal. 75, 3210-3217 (2012)
-
(2012)
Nonlinear Anal.
, vol.75
, pp. 3210-3217
-
-
Chen, T.1
Liu, W.2
Hu, Z.3
-
19
-
-
0035426671
-
Three positive fixed points of nonlinear operators on ordered Banach spaces
-
DOI 10.1016/S0898-1221(01)00156-0, PII S0898122101001560
-
Avery, RI, Peterson, AC: Three positive fixed points of nonlinear operators on ordered Banach spaces. Comput. Math. Appl. 42, 313-322 (2001) (Pubitemid 32639403)
-
(2001)
Computers and Mathematics with Applications
, vol.42
, Issue.3-5
, pp. 313-322
-
-
Avery, R.I.1
Peterson, A.C.2
|