메뉴 건너뛰기




Volumn , Issue , 2006, Pages 427-438

UnkClus: Efficient clustering via heterogeneous semantic links

Author keywords

[No Author keywords available]

Indexed keywords

'CURRENT; BASED CLUSTERING; CLUSTERING METHODS; CLUSTERINGS; PROPERTY; RELATIONAL DATABASE; SEMANTIC LINK; SIMILARITY BETWEEN OBJECTS; SIMRANK; TYPED LINKS;

EID: 84893853717     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (99)

References (22)
  • 2
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in large databases. SIGMOD, 1993.
    • (1993) SIGMOD
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 3
    • 31844439558 scopus 로고    scopus 로고
    • Multi-way distributional clustering via pairwise interactions
    • R. Bekkerman, R. El-Yaniv, A. McCallum. Multi-way distributional clustering via pairwise interactions. ICML, 2005.
    • (2005) ICML
    • Bekkerman, R.1    El-Yaniv, R.2    Mccallum, A.3
  • 5
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of expression data
    • Y. Cheng, C. M. Church. Biclustering of expression data. ISMB, 2000.
    • (2000) ISMB
    • Cheng, Y.1    Church, C.M.2
  • 6
  • 9
    • 77954307040 scopus 로고    scopus 로고
    • Scaling link-base similarity search
    • D. Fogaras, B. Râcz. Scaling link-base similarity search. WWW, 2005.
    • (2005) WWW
    • Fogaras, D.1    Râcz, B.2
  • 10
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, K. Shim. CURE: an efficient clustering algorithm for large databases. SIGMOD, 1998.
    • (1998) SIGMOD
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 11
    • 78149328321 scopus 로고    scopus 로고
    • Mining top-k frequent closed patterns without minimum support
    • J. Han, J. Wang, Y. Lu, P. Tzvetkov. Mining top-k frequent closed patterns without minimum support. ICDM, 2002.
    • (2002) ICDM
    • Han, J.1    Wang, J.2    Lu, Y.3    Tzvetkov, P.4
  • 12
    • 0242625250 scopus 로고    scopus 로고
    • SimRank: A measure of structural-context similarity
    • G. Jeh and J. Widom. SimRank: A measure of structural-context similarity. KDD, 2002.
    • (2002) KDD
    • Jeh, G.1    Widom, J.2
  • 13
    • 84893822549 scopus 로고    scopus 로고
    • Relational distance-based clustering
    • M. Kirsten, S. Wrobel. Relational distance-based clustering - IIP, 1998.
    • (1998) IIP
    • Kirsten, M.1    Wrobel, S.2
  • 14
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. MacQueen. Some methods for classification and analysis of multivariate observations. Berkeley Sym., 1967.
    • (1967) Berkeley Sym.
    • Macqueen, J.1
  • 15
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • R.T. Ng, J. Han. Efficient and effective clustering methods for spatial data mining. VLDB, 1994.
    • (1994) VLDB
    • Ng, R.T.1    Han, J.2
  • 17
    • 0002663098 scopus 로고
    • SLINK: An optimally efficient algorithm for the single-link cluster method
    • R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster method. The Computer Journal, 16(1):30-34, 1973.
    • (1973) The Computer Journal , vol.16 , Issue.1 , pp. 30-34
    • Sibson, R.1
  • 19
    • 77952363125 scopus 로고    scopus 로고
    • CLOSET+: Searching for the best strategies for mining frequent closed itemsets
    • J. Wang, J, Han, J. Pei. CLOSET+: searching for the best strategies for mining frequent closed itemsets. KDD, 2003.
    • (2003) KDD
    • Wang, J.1    Han, J.2    Pei, J.3
  • 20
    • 1542347775 scopus 로고    scopus 로고
    • ReCoM: Reinforcement clustering of multi-type interrelated data objects
    • J.D. Wang, H.J. Zeng, Z. Chen, H.J. Lu, L. Tao, W.Y. Ma. ReCoM: Reinforcement clustering of multi-type interrelated data objects. SIGIH, 2003.
    • (2003) SIGIH
    • Wang, J.D.1    Zeng, H.J.2    Chen, Z.3    Lu, H.J.4    Tao, L.5    Ma, W.Y.6
  • 21
    • 32344441804 scopus 로고    scopus 로고
    • Cross-relational clustering with user's guidance
    • X. Yin, J. Han, P.S. Yu. Cross-relational clustering with user's guidance. KDD, 2005.
    • (2005) KDD
    • Yin, X.1    Han, J.2    Yu, P.S.3
  • 22
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, M. Livny. BIRCH: An efficient data clustering method for very large databases. SIGMOD, 1996.
    • (1996) SIGMOD
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.