-
2
-
-
33244468835
-
Practical privacy: The SuLQ framework
-
A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: The SuLQ framework. In Proc. 24th ACM Symposium on Principles of Database Systems (PODS), pages 128-138, 2005.
-
(2005)
Proc. 24th ACM Symposium on Principles of Database Systems (PODS)
, pp. 128-138
-
-
Blum, A.1
Dwork, C.2
Mcsherry, F.3
Nissim, K.4
-
4
-
-
0030732626
-
Exact learning of formulas in parallel
-
N. H. Bshouty. Exact learning of formulas in parallel. Machine Learning, 26(1):25-41, 1997.
-
(1997)
Machine Learning
, vol.26
, Issue.1
, pp. 25-41
-
-
Bshouty, N.H.1
-
5
-
-
0036643072
-
Logistic regression, adaboost and bregman distances
-
M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, adaboost and bregman distances. Machine Learning, 48(1-3):253-285, 2002.
-
(2002)
Machine Learning
, vol.48
, Issue.1-3
, pp. 253-285
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
7
-
-
84898431582
-
Efficient protocols for distributed classification and optimization
-
abs/1204.3523
-
H. Daume III, J. Phillips, A. Saha, and S. Venkatasubramanian. Efficient protocols for distributed classification and optimization. CoRR, abs/1204.3523, 2012b.
-
(2012)
CoRR
-
-
Daume III, H.1
Phillips, J.2
Saha, A.3
Venkatasubramanian, S.4
-
9
-
-
33746335051
-
Differential privacy
-
C. Dwork. Differential privacy. In ICALP (2), pages 1-12, 2006.
-
(2006)
ICALP
, Issue.2
, pp. 1-12
-
-
Dwork, C.1
-
10
-
-
70349305273
-
Differential privacy: A survey of results
-
C. Dwork. Differential privacy: A survey of results. In TAMC, pages 1-19, 2008.
-
(2008)
TAMC
, pp. 1-19
-
-
Dwork, C.1
-
11
-
-
70350645515
-
The differential privacy frontier (extended abstract)
-
C. Dwork. The differential privacy frontier (extended abstract). In TCC, pages 496-502, 2009.
-
(2009)
TCC
, pp. 496-502
-
-
Dwork, C.1
-
12
-
-
35048856104
-
Privacy-preserving datamining on vertically partitioned databases
-
Lecture Notes in Computer Science, Springer
-
C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned databases. In Proceedings of CRYPTO, Lecture Notes in Computer Science, pages 528-544. Springer, 2004.
-
(2004)
Proceedings of CRYPTO
, pp. 528-544
-
-
Dwork, C.1
Nissim, K.2
-
13
-
-
78751522594
-
Boosting and differential privacy
-
C. Dwork, G. N. Rothblum, and S. P. Vadhan. Boosting and differential privacy. In FOCS, pages 51-60, 2010.
-
(2010)
FOCS
, pp. 51-60
-
-
Dwork, C.1
Rothblum, G.N.2
Vadhan, S.P.3
-
14
-
-
85043515682
-
Boosting a weak learning algorithm by majority
-
Y. Freund. Boosting a weak learning algorithm by majority. In COLT, pages 202-216, 1990.
-
(1990)
COLT
, pp. 202-216
-
-
Freund, Y.1
-
15
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119-139, 1997.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
16
-
-
0000440955
-
On the complexity of teaching
-
Morgan Kaufmann
-
S. A. Goldman and M. J. Kearns. On the complexity of teaching. In Proceedings of COLT '91, pages 303-314. Morgan Kaufmann, 1991.
-
(1991)
Proceedings of COLT '91
, pp. 303-314
-
-
Goldman, S.A.1
Kearns, M.J.2
-
18
-
-
0021195520
-
Information transfer in distributed computing with applications to vlsi
-
J. J́aJ́a and V. K. Prasanna. Information transfer in distributed computing with applications to vlsi. J. ACM, 31(1):150-162, 1984.
-
(1984)
J. ACM
, vol.31
, Issue.1
, pp. 150-162
-
-
J́aj́a, J.1
Prasanna, V.K.2
-
19
-
-
57949111704
-
What can we learn privately?
-
S. Kasiviswanathan, H. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What Can We Learn Privately? In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 531-540, 2008.
-
(2008)
Proc. 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS)
, pp. 531-540
-
-
Kasiviswanathan, S.1
Lee, H.2
Nissim, K.3
Raskhodnikova, S.4
Smith, A.5
-
20
-
-
0032202014
-
Efficient noise-tolerant learning from statistical queries
-
M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45(6): 983-1006, 1998.
-
(1998)
Journal of the ACM
, vol.45
, Issue.6
, pp. 983-1006
-
-
Kearns, M.1
-
22
-
-
85162312627
-
Algorithms and hardness results for parallel large margin learning
-
P. Long and R. Servedio. Algorithms and hardness results for parallel large margin learning. In NIPS, 2011.
-
(2011)
NIPS
-
-
Long, P.1
Servedio, R.2
-
23
-
-
0242458587
-
Distributed computing: A locality-sensitive approach
-
Philadelphia, PA, USA, ISBN 0-89871-464-8
-
D. Peleg. Distributed computing: A locality-sensitive approach. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000. ISBN 0-89871-464-8.
-
(2000)
Society for Industrial and Applied Mathematics
-
-
Peleg, D.1
-
24
-
-
85156253017
-
Learning complicated concepts reliably and usefully
-
Aug
-
R. L. Rivest and R. Sloan. Learning complicated concepts reliably and usefully. In Proceedings AAAI-88, pages 635-639, Aug. 1988.
-
(1988)
Proceedings AAAI-88
, pp. 635-639
-
-
Rivest, R.L.1
Sloan, R.2
-
25
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
26
-
-
0036588759
-
Perceptron, winnow, and PAC learning
-
R. Servedio. Perceptron, Winnow, and PAC learning. SIAM Journal on Computing, 31(5), 2002.
-
(2002)
SIAM Journal on Computing
, vol.31
, Issue.5
-
-
Servedio, R.1
-
27
-
-
85161967549
-
Parallelized stochastic gradient descent
-
M. Zinkevich, M.Weimer, A. J. Smola, and L. Li. Parallelized stochastic gradient descent. In NIPS, pages 2595-2603, 2010.
-
(2010)
NIPS
, pp. 2595-2603
-
-
Zinkevich, M.1
Weimer, M.2
Smola, A.J.3
Li, L.4
|