-
3
-
-
0002795136
-
On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity
-
F. Keil, W. Mackens, H. Voss, J. Werther, Springer-Verlag Heidelberg
-
K. Diethelm, and A.D. Freed On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity F. Keil, W. Mackens, H. Voss, J. Werther, Science Computing in Chemical Engineering -Computational Fluid Dynamics, Reaction Engineering and Molecular Properties 1999 Springer-Verlag Heidelberg 217 224
-
(1999)
Science Computing in Chemical Engineering -Computational Fluid Dynamics, Reaction Engineering and Molecular Properties
, pp. 217-224
-
-
Diethelm, K.1
Freed, A.D.2
-
5
-
-
80052266275
-
Solvability of fractional three-point boundary value problems with nonlinear growth
-
Z. Bai, and Y. Zhang Solvability of fractional three-point boundary value problems with nonlinear growth Appl. Math. Comput. 218 2011 1719 1725
-
(2011)
Appl. Math. Comput.
, vol.218
, pp. 1719-1725
-
-
Bai, Z.1
Zhang, Y.2
-
6
-
-
0003244044
-
Fractional differential equations
-
Academic Press New York
-
I. Podlubny Fractional differential equations Mathematics in Science and Engineering vol. 198 1999 Academic Press New York
-
(1999)
Mathematics in Science and Engineering
, vol.198 VOL.
-
-
Podlubny, I.1
-
7
-
-
50349117552
-
The role of psychophysics in rheology
-
G.W. Scott Blair The role of psychophysics in rheology J. Colloid Sci. 2 1947 21 32
-
(1947)
J. Colloid Sci.
, vol.2
, pp. 21-32
-
-
Scott Blair, G.W.1
-
8
-
-
0000902727
-
Generalized viscoelastic models: Their fractional equations with solutions
-
H. Schiessel, R. Metzler, A. Blumen, and T.F. Nonnemacher Generalized viscoelastic models: their fractional equations with solutions J. Phys. A: Math. Gen. 28 1995 6567 6584 (Pubitemid 126007944)
-
(1995)
Journal of Physics A: Mathematical and General
, vol.28
, Issue.23
, pp. 6567-6584
-
-
Schiessel, H.1
Metzler, R.2
Blumen, A.3
Nonnenmacher, T.F.4
-
9
-
-
17444382726
-
Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions
-
DOI 10.1007/s10625-005-0137-y
-
A.A. Kilbas, and S.A. Marzan Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions Differ. Equ. 41 2005 84 89 (Pubitemid 40551100)
-
(2005)
Differential Equations
, vol.41
, Issue.1
, pp. 84-89
-
-
Kilbas, A.A.1
Marzan, S.A.2
-
10
-
-
33645152919
-
Positive solutions for boundary-value problems of nonlinear fractional differential equations
-
S. Zhang Positive solutions for boundary-value problems of nonlinear fractional differential equations J. Differ. Equ. 2006 36 2006 1 12 (Pubitemid 43448954)
-
(2006)
Electronic Journal of Differential Equations
, vol.2006
, pp. 1-12
-
-
Zhang, S.1
-
11
-
-
44649165019
-
Subordination and superordination for univalent solutions for fractional differential equations
-
R.W. Ibrahim, and M. Darus Subordination and superordination for univalent solutions for fractional differential equations J. Math. Anal. Appl. 345 2008 871 879
-
(2008)
J. Math. Anal. Appl.
, vol.345
, pp. 871-879
-
-
Ibrahim, R.W.1
Darus, M.2
-
13
-
-
77957591180
-
Existence and uniqueness of solution for fractioal differential equations with integral boundary value conditions
-
X. Liu, M. Jia, and B. Wu Existence and uniqueness of solution for fractioal differential equations with integral boundary value conditions Electron. J. Qual. Theory Differ. Equ. 69 2009 1 10
-
(2009)
Electron. J. Qual. Theory Differ. Equ.
, vol.69
, pp. 1-10
-
-
Liu, X.1
Jia, M.2
Wu, B.3
-
14
-
-
79961001222
-
Three nonnegative solutions for fractional differential equations with integral boundary conditions
-
M. Jia, and X. Liu Three nonnegative solutions for fractional differential equations with integral boundary conditions Comput. Math. Appl. 62 2011 1405 1412
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 1405-1412
-
-
Jia, M.1
Liu, X.2
-
15
-
-
77950189007
-
Multiple solutions for fractional differential equations with nonlinear boundary conditions
-
X. Liu, and M. Jia Multiple solutions for fractional differential equations with nonlinear boundary conditions Comput. Math. Appl. 59 2010 2880 2886
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 2880-2886
-
-
Liu, X.1
Jia, M.2
-
16
-
-
38049021511
-
On the solution of the fractional nonlinear Schrödinger equation
-
S.Z. Rida, H.M. El-Sherbiny, and A.A.M. Arafa On the solution of the fractional nonlinear Schrödinger equation Phys. Lett. A 372 2008 553 558
-
(2008)
Phys. Lett. A
, vol.372
, pp. 553-558
-
-
Rida, S.Z.1
El-Sherbiny, H.M.2
Arafa, A.A.M.3
-
17
-
-
9644310213
-
Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions
-
Z. He, and X. He Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions Comput. Math. Appl. 48 2004 73 84
-
(2004)
Comput. Math. Appl.
, vol.48
, pp. 73-84
-
-
He, Z.1
He, X.2
-
19
-
-
39749179585
-
Existence and uniqueness of solutions of second-order three-point boundary value problems with upper and lower solutions in the reversed order
-
DOI 10.1016/j.na.2007.01.065, PII S0362546X07001149
-
F. Li, M. Jia, X. Liu, C. Li, and G. Li Existence and uniqueness of solutions of secend-order three-point boundary value problems with upper and lower solutions in the reverse order Nonlinear Anal. 68 2008 2381 2388 (Pubitemid 351295823)
-
(2008)
Nonlinear Analysis, Theory, Methods and Applications
, vol.68
, Issue.8
, pp. 2381-2388
-
-
Li, F.1
Jia, M.2
Liu, X.3
Li, C.4
Li, G.5
-
20
-
-
78650178238
-
Monotone iterative method for the second-order three-point boundary value problem with upper and lower solutions in the reversed order
-
F. Li, J. Sun, and M. Jia Monotone iterative method for the second-order three-point boundary value problem with upper and lower solutions in the reversed order Appl. Math. Comput. 217 2011 4840 4847
-
(2011)
Appl. Math. Comput.
, vol.217
, pp. 4840-4847
-
-
Li, F.1
Sun, J.2
Jia, M.3
-
21
-
-
50549087306
-
Monotone iterative method for first-order functional difference equations with nonlinear boundary value conditions
-
P. Wang, S. Tian, and Y. Wu Monotone iterative method for first-order functional difference equations with nonlinear boundary value conditions Appl. Math. Comput. 203 2008 266 272
-
(2008)
Appl. Math. Comput.
, vol.203
, pp. 266-272
-
-
Wang, P.1
Tian, S.2
Wu, Y.3
-
22
-
-
30944433189
-
Existence of at least three solutions of a second-order three-point boundary value problem
-
DOI 10.1016/j.na.2005.06.040, PII S0362546X05006784
-
R.A. Khan, and J.R.L. Webb Existence of at least three solutions of a second-order three-point boundary value problem Nonlinear Anal. 64 2006 1356 1366 (Pubitemid 43113180)
-
(2006)
Nonlinear Analysis, Theory, Methods and Applications
, vol.64
, Issue.6
, pp. 1356-1366
-
-
Khan, R.A.1
Webb, J.R.L.2
-
23
-
-
0034692193
-
Existence of multiple solutions for second order boundary value problems
-
J. Henderson Existence of multiple solutions for second order boundary value problems J. Differ. Equ. 166 2000 443 454
-
(2000)
J. Differ. Equ.
, vol.166
, pp. 443-454
-
-
Henderson, J.1
-
24
-
-
0034251201
-
Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary value conditions
-
J.J. Nieto, and Rosana Rodríguez-López Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary value conditions Comput. Math. Appl. 40 4/5 2000 433 442
-
(2000)
Comput. Math. Appl.
, vol.40
, Issue.4-5
, pp. 433-442
-
-
Nieto, J.J.1
Rodriguez-Lopez, R.2
-
25
-
-
0141849307
-
Remarks on periodic boundary value problems for functional differential equations
-
DOI 10.1016/S0377-0427(03)00452-7
-
J.J. Nieto, and R. Rodríguez-López Remarks on periodic boundary value problems for functional differential equations J. Comput. Appl. Math. 158 2003 339 353 (Pubitemid 37142097)
-
(2003)
Journal of Computational and Applied Mathematics
, vol.158
, Issue.2
, pp. 339-353
-
-
Nieto, J.J.1
Rodriguez-Lopez, R.2
-
26
-
-
1642519758
-
On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations
-
DOI 10.1016/j.jmaa.2003.09.020
-
D. Jiang, J.J. Nieto, and W. Zuo On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations J. Math. Anal. Appl. 289 2004 691 699 (Pubitemid 38131004)
-
(2004)
Journal of Mathematical Analysis and Applications
, vol.289
, Issue.2
, pp. 691-699
-
-
Jiang, D.1
Nieto, J.J.2
Zuo, W.3
-
27
-
-
27744593054
-
Solvability of three point boundary value problems for second order differential equations with deviating arguments
-
DOI 10.1016/j.jmaa.2005.03.076, PII S0022247X05002660
-
T. Jankowski Solvability of three point boundary value problems for second order ordinary differential equations with deviating arguments J. Math. Anal. Appl. 312 2005 620 636 (Pubitemid 41614237)
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.312
, Issue.2
, pp. 620-636
-
-
Jankowski, T.1
-
28
-
-
0036568079
-
Monotone method for singular Neumann problem
-
DOI 10.1016/S0362-546X(01)00124-9, PII S0362546X01001249
-
N. Yazidi Monotone method for singular Neumann problem Nonlinear Anal. 49 2002 589 602 (Pubitemid 34154731)
-
(2002)
Nonlinear Analysis, Theory, Methods and Applications
, vol.49
, Issue.5
, pp. 589-602
-
-
Yazidi, N.1
-
29
-
-
67349242752
-
Boundary value problems involving upper and lower solutions in reverse order
-
W. Wang, X. Yang, and J. Shen Boundary value problems involving upper and lower solutions in reverse order J. Comput. Appl. Math. 230 1 2009 1 7
-
(2009)
J. Comput. Appl. Math.
, vol.230
, Issue.1
, pp. 1-7
-
-
Wang, W.1
Yang, X.2
Shen, J.3
-
30
-
-
79955561060
-
Monotone iterative sequences for nonlinear boundary value problems of fractional order
-
M. Al-Refai, and M.A. Hajji Monotone iterative sequences for nonlinear boundary value problems of fractional order Nonlinear Anal. 74 2011 3531 3539
-
(2011)
Nonlinear Anal.
, vol.74
, pp. 3531-3539
-
-
Al-Refai, M.1
Hajji, M.A.2
-
31
-
-
84863465072
-
Method of upper and lower solutions for fractional differential equations
-
L. Lin, X. Liu, and H. Fang Method of upper and lower solutions for fractional differential equations Electron. J. Differ. Equ. 2012 100 2012 1 13
-
(2012)
Electron. J. Differ. Equ.
, vol.2012
, Issue.100
, pp. 1-13
-
-
Lin, L.1
Liu, X.2
Fang, H.3
-
32
-
-
0039459055
-
Differential equations of non-integer order
-
J.H. Barrett Differential equations of non-integer order Can. J. Math. 6 4 1954 529 541
-
(1954)
Can. J. Math.
, vol.6
, Issue.4
, pp. 529-541
-
-
Barrett, J.H.1
-
33
-
-
79960998156
-
The existence of a solution for a frational differential equation with nonlinear boundary conditions considered using upper and lower solutions in reversed order
-
S. Zhang, and X. Su The existence of a solution for a frational differential equation with nonlinear boundary conditions considered using upper and lower solutions in reversed order Comput. Math. Appl. 62 2011 1269 1274
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 1269-1274
-
-
Zhang, S.1
Su, X.2
|