메뉴 건너뛰기




Volumn 232, Issue , 2014, Pages 313-323

Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions

Author keywords

Fractional differential equations; Integral boundary value problems; Leray Schauder degree theory; Multiplicity of solutions; Upper and lower solutions

Indexed keywords

EXISTENCE THEOREM; FRACTIONAL DIFFERENTIAL EQUATIONS; LERAY-SCHAUDER DEGREE THEORY; METHOD OF UPPER AND LOWER SOLUTIONS; MULTIPLE SOLUTIONS; MULTIPLICITY OF SOLUTIONS; POSITIVE SOLUTION; UPPER AND LOWER SOLUTIONS;

EID: 84893716569     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2014.01.073     Document Type: Article
Times cited : (80)

References (33)
  • 2
  • 5
    • 80052266275 scopus 로고    scopus 로고
    • Solvability of fractional three-point boundary value problems with nonlinear growth
    • Z. Bai, and Y. Zhang Solvability of fractional three-point boundary value problems with nonlinear growth Appl. Math. Comput. 218 2011 1719 1725
    • (2011) Appl. Math. Comput. , vol.218 , pp. 1719-1725
    • Bai, Z.1    Zhang, Y.2
  • 6
    • 0003244044 scopus 로고    scopus 로고
    • Fractional differential equations
    • Academic Press New York
    • I. Podlubny Fractional differential equations Mathematics in Science and Engineering vol. 198 1999 Academic Press New York
    • (1999) Mathematics in Science and Engineering , vol.198 VOL.
    • Podlubny, I.1
  • 7
    • 50349117552 scopus 로고
    • The role of psychophysics in rheology
    • G.W. Scott Blair The role of psychophysics in rheology J. Colloid Sci. 2 1947 21 32
    • (1947) J. Colloid Sci. , vol.2 , pp. 21-32
    • Scott Blair, G.W.1
  • 9
    • 17444382726 scopus 로고    scopus 로고
    • Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions
    • DOI 10.1007/s10625-005-0137-y
    • A.A. Kilbas, and S.A. Marzan Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions Differ. Equ. 41 2005 84 89 (Pubitemid 40551100)
    • (2005) Differential Equations , vol.41 , Issue.1 , pp. 84-89
    • Kilbas, A.A.1    Marzan, S.A.2
  • 10
    • 33645152919 scopus 로고    scopus 로고
    • Positive solutions for boundary-value problems of nonlinear fractional differential equations
    • S. Zhang Positive solutions for boundary-value problems of nonlinear fractional differential equations J. Differ. Equ. 2006 36 2006 1 12 (Pubitemid 43448954)
    • (2006) Electronic Journal of Differential Equations , vol.2006 , pp. 1-12
    • Zhang, S.1
  • 11
    • 44649165019 scopus 로고    scopus 로고
    • Subordination and superordination for univalent solutions for fractional differential equations
    • R.W. Ibrahim, and M. Darus Subordination and superordination for univalent solutions for fractional differential equations J. Math. Anal. Appl. 345 2008 871 879
    • (2008) J. Math. Anal. Appl. , vol.345 , pp. 871-879
    • Ibrahim, R.W.1    Darus, M.2
  • 12
    • 35448979806 scopus 로고    scopus 로고
    • Fractional order adaptive high-gain controllers for a class of linear systems
    • DOI 10.1016/j.cnsns.2006.06.009, PII S1007570406001377
    • S. Ladaci, J.L. Loiseau, and A. Charef Fractional order adaptive high-gain controllers for a class of linear systems Commun. Nonlinear Sci. Numer. Simul. 13 2008 707 714 (Pubitemid 47629874)
    • (2008) Communications in Nonlinear Science and Numerical Simulation , vol.13 , Issue.4 , pp. 707-714
    • Ladaci, S.1    Loiseau, J.J.2    Charef, A.3
  • 13
    • 77957591180 scopus 로고    scopus 로고
    • Existence and uniqueness of solution for fractioal differential equations with integral boundary value conditions
    • X. Liu, M. Jia, and B. Wu Existence and uniqueness of solution for fractioal differential equations with integral boundary value conditions Electron. J. Qual. Theory Differ. Equ. 69 2009 1 10
    • (2009) Electron. J. Qual. Theory Differ. Equ. , vol.69 , pp. 1-10
    • Liu, X.1    Jia, M.2    Wu, B.3
  • 14
    • 79961001222 scopus 로고    scopus 로고
    • Three nonnegative solutions for fractional differential equations with integral boundary conditions
    • M. Jia, and X. Liu Three nonnegative solutions for fractional differential equations with integral boundary conditions Comput. Math. Appl. 62 2011 1405 1412
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1405-1412
    • Jia, M.1    Liu, X.2
  • 15
    • 77950189007 scopus 로고    scopus 로고
    • Multiple solutions for fractional differential equations with nonlinear boundary conditions
    • X. Liu, and M. Jia Multiple solutions for fractional differential equations with nonlinear boundary conditions Comput. Math. Appl. 59 2010 2880 2886
    • (2010) Comput. Math. Appl. , vol.59 , pp. 2880-2886
    • Liu, X.1    Jia, M.2
  • 16
    • 38049021511 scopus 로고    scopus 로고
    • On the solution of the fractional nonlinear Schrödinger equation
    • S.Z. Rida, H.M. El-Sherbiny, and A.A.M. Arafa On the solution of the fractional nonlinear Schrödinger equation Phys. Lett. A 372 2008 553 558
    • (2008) Phys. Lett. A , vol.372 , pp. 553-558
    • Rida, S.Z.1    El-Sherbiny, H.M.2    Arafa, A.A.M.3
  • 17
    • 9644310213 scopus 로고    scopus 로고
    • Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions
    • Z. He, and X. He Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions Comput. Math. Appl. 48 2004 73 84
    • (2004) Comput. Math. Appl. , vol.48 , pp. 73-84
    • He, Z.1    He, X.2
  • 19
    • 39749179585 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions of second-order three-point boundary value problems with upper and lower solutions in the reversed order
    • DOI 10.1016/j.na.2007.01.065, PII S0362546X07001149
    • F. Li, M. Jia, X. Liu, C. Li, and G. Li Existence and uniqueness of solutions of secend-order three-point boundary value problems with upper and lower solutions in the reverse order Nonlinear Anal. 68 2008 2381 2388 (Pubitemid 351295823)
    • (2008) Nonlinear Analysis, Theory, Methods and Applications , vol.68 , Issue.8 , pp. 2381-2388
    • Li, F.1    Jia, M.2    Liu, X.3    Li, C.4    Li, G.5
  • 20
    • 78650178238 scopus 로고    scopus 로고
    • Monotone iterative method for the second-order three-point boundary value problem with upper and lower solutions in the reversed order
    • F. Li, J. Sun, and M. Jia Monotone iterative method for the second-order three-point boundary value problem with upper and lower solutions in the reversed order Appl. Math. Comput. 217 2011 4840 4847
    • (2011) Appl. Math. Comput. , vol.217 , pp. 4840-4847
    • Li, F.1    Sun, J.2    Jia, M.3
  • 21
    • 50549087306 scopus 로고    scopus 로고
    • Monotone iterative method for first-order functional difference equations with nonlinear boundary value conditions
    • P. Wang, S. Tian, and Y. Wu Monotone iterative method for first-order functional difference equations with nonlinear boundary value conditions Appl. Math. Comput. 203 2008 266 272
    • (2008) Appl. Math. Comput. , vol.203 , pp. 266-272
    • Wang, P.1    Tian, S.2    Wu, Y.3
  • 22
    • 30944433189 scopus 로고    scopus 로고
    • Existence of at least three solutions of a second-order three-point boundary value problem
    • DOI 10.1016/j.na.2005.06.040, PII S0362546X05006784
    • R.A. Khan, and J.R.L. Webb Existence of at least three solutions of a second-order three-point boundary value problem Nonlinear Anal. 64 2006 1356 1366 (Pubitemid 43113180)
    • (2006) Nonlinear Analysis, Theory, Methods and Applications , vol.64 , Issue.6 , pp. 1356-1366
    • Khan, R.A.1    Webb, J.R.L.2
  • 23
    • 0034692193 scopus 로고    scopus 로고
    • Existence of multiple solutions for second order boundary value problems
    • J. Henderson Existence of multiple solutions for second order boundary value problems J. Differ. Equ. 166 2000 443 454
    • (2000) J. Differ. Equ. , vol.166 , pp. 443-454
    • Henderson, J.1
  • 24
    • 0034251201 scopus 로고    scopus 로고
    • Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary value conditions
    • J.J. Nieto, and Rosana Rodríguez-López Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary value conditions Comput. Math. Appl. 40 4/5 2000 433 442
    • (2000) Comput. Math. Appl. , vol.40 , Issue.4-5 , pp. 433-442
    • Nieto, J.J.1    Rodriguez-Lopez, R.2
  • 25
    • 0141849307 scopus 로고    scopus 로고
    • Remarks on periodic boundary value problems for functional differential equations
    • DOI 10.1016/S0377-0427(03)00452-7
    • J.J. Nieto, and R. Rodríguez-López Remarks on periodic boundary value problems for functional differential equations J. Comput. Appl. Math. 158 2003 339 353 (Pubitemid 37142097)
    • (2003) Journal of Computational and Applied Mathematics , vol.158 , Issue.2 , pp. 339-353
    • Nieto, J.J.1    Rodriguez-Lopez, R.2
  • 26
    • 1642519758 scopus 로고    scopus 로고
    • On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations
    • DOI 10.1016/j.jmaa.2003.09.020
    • D. Jiang, J.J. Nieto, and W. Zuo On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations J. Math. Anal. Appl. 289 2004 691 699 (Pubitemid 38131004)
    • (2004) Journal of Mathematical Analysis and Applications , vol.289 , Issue.2 , pp. 691-699
    • Jiang, D.1    Nieto, J.J.2    Zuo, W.3
  • 27
    • 27744593054 scopus 로고    scopus 로고
    • Solvability of three point boundary value problems for second order differential equations with deviating arguments
    • DOI 10.1016/j.jmaa.2005.03.076, PII S0022247X05002660
    • T. Jankowski Solvability of three point boundary value problems for second order ordinary differential equations with deviating arguments J. Math. Anal. Appl. 312 2005 620 636 (Pubitemid 41614237)
    • (2005) Journal of Mathematical Analysis and Applications , vol.312 , Issue.2 , pp. 620-636
    • Jankowski, T.1
  • 28
    • 0036568079 scopus 로고    scopus 로고
    • Monotone method for singular Neumann problem
    • DOI 10.1016/S0362-546X(01)00124-9, PII S0362546X01001249
    • N. Yazidi Monotone method for singular Neumann problem Nonlinear Anal. 49 2002 589 602 (Pubitemid 34154731)
    • (2002) Nonlinear Analysis, Theory, Methods and Applications , vol.49 , Issue.5 , pp. 589-602
    • Yazidi, N.1
  • 29
    • 67349242752 scopus 로고    scopus 로고
    • Boundary value problems involving upper and lower solutions in reverse order
    • W. Wang, X. Yang, and J. Shen Boundary value problems involving upper and lower solutions in reverse order J. Comput. Appl. Math. 230 1 2009 1 7
    • (2009) J. Comput. Appl. Math. , vol.230 , Issue.1 , pp. 1-7
    • Wang, W.1    Yang, X.2    Shen, J.3
  • 30
    • 79955561060 scopus 로고    scopus 로고
    • Monotone iterative sequences for nonlinear boundary value problems of fractional order
    • M. Al-Refai, and M.A. Hajji Monotone iterative sequences for nonlinear boundary value problems of fractional order Nonlinear Anal. 74 2011 3531 3539
    • (2011) Nonlinear Anal. , vol.74 , pp. 3531-3539
    • Al-Refai, M.1    Hajji, M.A.2
  • 31
    • 84863465072 scopus 로고    scopus 로고
    • Method of upper and lower solutions for fractional differential equations
    • L. Lin, X. Liu, and H. Fang Method of upper and lower solutions for fractional differential equations Electron. J. Differ. Equ. 2012 100 2012 1 13
    • (2012) Electron. J. Differ. Equ. , vol.2012 , Issue.100 , pp. 1-13
    • Lin, L.1    Liu, X.2    Fang, H.3
  • 32
    • 0039459055 scopus 로고
    • Differential equations of non-integer order
    • J.H. Barrett Differential equations of non-integer order Can. J. Math. 6 4 1954 529 541
    • (1954) Can. J. Math. , vol.6 , Issue.4 , pp. 529-541
    • Barrett, J.H.1
  • 33
    • 79960998156 scopus 로고    scopus 로고
    • The existence of a solution for a frational differential equation with nonlinear boundary conditions considered using upper and lower solutions in reversed order
    • S. Zhang, and X. Su The existence of a solution for a frational differential equation with nonlinear boundary conditions considered using upper and lower solutions in reversed order Comput. Math. Appl. 62 2011 1269 1274
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1269-1274
    • Zhang, S.1    Su, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.