메뉴 건너뛰기




Volumn 128, Issue , 2014, Pages 389-406

New automated power quality recognition system for online/offline monitoring

Author keywords

Data mining; Discrete wavelet transform; Feature selection; Hyperbolic S transform; Online offline power quality monitoring; Pattern recognition

Indexed keywords

CLASSIFICATION METHODS; COMPARATIVE ASSESSMENT; COMPUTATIONAL EXECUTION TIME; HYPERBOLIC S TRANSFORMS; POWER QUALITY DISTURBANCES; POWER QUALITY MONITORING; SEQUENTIAL FORWARD SELECTION; TIME-FREQUENCY RESOLUTION;

EID: 84893678125     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.08.026     Document Type: Article
Times cited : (41)

References (32)
  • 2
    • 78650605297 scopus 로고    scopus 로고
    • A real-time classification method of power quality disturbances
    • Zhang M., Li K., Hu Y. A real-time classification method of power quality disturbances. Electr. Power Syst. Res. 2011, 81:660-666.
    • (2011) Electr. Power Syst. Res. , vol.81 , pp. 660-666
    • Zhang, M.1    Li, K.2    Hu, Y.3
  • 3
    • 27844577319 scopus 로고    scopus 로고
    • On power quality indices and real time measurement
    • Lin T., Domijan A. On power quality indices and real time measurement. IEEE Trans. Power Deliv. 2005, 20:4.
    • (2005) IEEE Trans. Power Deliv. , vol.20 , pp. 4
    • Lin, T.1    Domijan, A.2
  • 4
    • 84893667731 scopus 로고    scopus 로고
    • Wavelet transform and multi-class relevance vector machines based recognition and classification of power quality disturbances
    • Moravej Z., Pazoki M., Abdoos A.A. Wavelet transform and multi-class relevance vector machines based recognition and classification of power quality disturbances. Eur. Trans. Electr. Power 2010.
    • (2010) Eur. Trans. Electr. Power
    • Moravej, Z.1    Pazoki, M.2    Abdoos, A.A.3
  • 5
    • 77950863635 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and selection for classification of power system disturbances using support vector machines
    • Eristi H., Ucar A., Demir Y. Wavelet-based feature extraction and selection for classification of power system disturbances using support vector machines. Electr. Power Syst. Res. 2010, 80:743-752.
    • (2010) Electr. Power Syst. Res. , vol.80 , pp. 743-752
    • Eristi, H.1    Ucar, A.2    Demir, Y.3
  • 6
    • 77249083034 scopus 로고    scopus 로고
    • A new algorithm for automatic classification of power quality events based on wavelet transform and SVM
    • Eristi H., Demir Y. A new algorithm for automatic classification of power quality events based on wavelet transform and SVM. Expert Syst. Appl. 2010, 37:4094-4102.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4094-4102
    • Eristi, H.1    Demir, Y.2
  • 9
    • 81855161547 scopus 로고    scopus 로고
    • Feature subset selection wrapper based on mutual information and rough sets
    • Foithong S., Pinngern O., Attachoo B. Feature subset selection wrapper based on mutual information and rough sets. Expert Syst. Appl. 2012, 39:574-584.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 574-584
    • Foithong, S.1    Pinngern, O.2    Attachoo, B.3
  • 10
    • 69249220239 scopus 로고    scopus 로고
    • Design of input vector for day-ahead price forecasting of electricity markets
    • Amjady N., Daraeepour A. Design of input vector for day-ahead price forecasting of electricity markets. Expert Syst. Appl. 2009, 36:12281-12294.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 12281-12294
    • Amjady, N.1    Daraeepour, A.2
  • 11
    • 33749830485 scopus 로고    scopus 로고
    • Speeding up the wrapper feature subset selection in regression by mutual information relevance and redundancy analysis
    • Springer-Verlag, Berlin, Germany
    • Dijck G., Hulle M.M. Speeding up the wrapper feature subset selection in regression by mutual information relevance and redundancy analysis. Lecture Notes on Computer Science 2006, 4131:31-40. Springer-Verlag, Berlin, Germany.
    • (2006) Lecture Notes on Computer Science , vol.4131 , pp. 31-40
    • Dijck, G.1    Hulle, M.M.2
  • 12
    • 35148839018 scopus 로고    scopus 로고
    • Investigation of effective automatic recognition systems of power-quality events
    • Gargoom A.M., Ertugrul N., Soong W.L. Investigation of effective automatic recognition systems of power-quality events. IEEE Trans. Power Deliv. 2007, 22:4.
    • (2007) IEEE Trans. Power Deliv. , vol.22 , pp. 4
    • Gargoom, A.M.1    Ertugrul, N.2    Soong, W.L.3
  • 13
    • 80053569949 scopus 로고    scopus 로고
    • Hybrid soft computing techniques for feature selection and parameter optimization in power quality data mining
    • Manimala K., Selvi K., Ahila R. Hybrid soft computing techniques for feature selection and parameter optimization in power quality data mining. Appl. Soft Comput. 2011, 13.
    • (2011) Appl. Soft Comput. , pp. 13
    • Manimala, K.1    Selvi, K.2    Ahila, R.3
  • 14
    • 0346076724 scopus 로고    scopus 로고
    • Multiresolution S-transform-based fuzzy recognition system for power quality events
    • Chilukuri M.V., Dash P.K. Multiresolution S-transform-based fuzzy recognition system for power quality events. IEEE Trans. Power Deliv. 2004, 19:323-330.
    • (2004) IEEE Trans. Power Deliv. , vol.19 , pp. 323-330
    • Chilukuri, M.V.1    Dash, P.K.2
  • 15
    • 58349095738 scopus 로고    scopus 로고
    • An expert system based on S-transform and neural network for automatic classification of power quality disturbances
    • Uyar M., Yildirim S., Gencoglu M.T. An expert system based on S-transform and neural network for automatic classification of power quality disturbances. Expert Syst. Appl. 2009, 36:5962-5975.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 5962-5975
    • Uyar, M.1    Yildirim, S.2    Gencoglu, M.T.3
  • 16
    • 45449113326 scopus 로고    scopus 로고
    • An effective wavelet-based feature extraction method for classification of power quality disturbance signals
    • Uyar M., Yildirim S., Gencoglu M.T. An effective wavelet-based feature extraction method for classification of power quality disturbance signals. Electr. Power Syst. Res. 2008, 78:1747-1755.
    • (2008) Electr. Power Syst. Res. , vol.78 , pp. 1747-1755
    • Uyar, M.1    Yildirim, S.2    Gencoglu, M.T.3
  • 17
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., Choi C. Input feature selection for classification problems. IEEE Trans. Neural Netw. 2002, 13:1.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 1
    • Kwak, N.1    Choi, C.2
  • 18
    • 70349451569 scopus 로고    scopus 로고
    • Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique
    • Amjady N., Keynia F. Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique. Energy Convers. Manage. 2009, 50:2976-2982.
    • (2009) Energy Convers. Manage. , vol.50 , pp. 2976-2982
    • Amjady, N.1    Keynia, F.2
  • 19
    • 33751002948 scopus 로고    scopus 로고
    • A novel feature selection approach: combining feature wrappers and filters
    • Uncu O., Turksen I.B. A novel feature selection approach: combining feature wrappers and filters. Inf. Sci. 2007, 177:449-466.
    • (2007) Inf. Sci. , vol.177 , pp. 449-466
    • Uncu, O.1    Turksen, I.B.2
  • 20
    • 79955622660 scopus 로고    scopus 로고
    • Fast transient stability assessment of large power system using probabilistic neural network with feature reduction techniques
    • Wahab N.I.A., Mohamed A., Hussain A. Fast transient stability assessment of large power system using probabilistic neural network with feature reduction techniques. Expert Syst. Appl. 2011, 38:11112-11119.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 11112-11119
    • Wahab, N.I.A.1    Mohamed, A.2    Hussain, A.3
  • 21
    • 71549164265 scopus 로고    scopus 로고
    • Wavelet Transform Application in Transient Power Quality Analysis, University of Shanghai for Science and Technology
    • J. Zi-pei, L. Yan-ling, W. Bin, et al., Wavelet Transform Application in Transient Power Quality Analysis, vol. 29(6), University of Shanghai for Science and Technology, 2007, pp. 597-600.
    • (2007) , vol.29 , Issue.6 , pp. 597-600
    • Zi-pei, J.1    Yan-ling, L.2    Bin, W.3
  • 22
    • 79955603037 scopus 로고    scopus 로고
    • Power quality disturbances classification using the 3-D space representation and PCA based neuro-fuzzy approach
    • Fernao Pires V., Amaral T.G., Martins J.F. Power quality disturbances classification using the 3-D space representation and PCA based neuro-fuzzy approach. Expert Syst. Appl. 2011, 38:11911-11917.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 11911-11917
    • Fernao Pires, V.1    Amaral, T.G.2    Martins, J.F.3
  • 23
    • 84893704393 scopus 로고    scopus 로고
    • A novel distance protection scheme using time-frequency analysis and pattern recognition approach
    • Dash P.K., Samantaray S.R A novel distance protection scheme using time-frequency analysis and pattern recognition approach. Electr. Power Energy Syst. 2006.
    • (2006) Electr. Power Energy Syst.
    • Dash, P.K.1    Samantaray, S.R.2
  • 24
    • 35148889227 scopus 로고    scopus 로고
    • Detection and classification of power quality disturbances using S-transform and modular neural network
    • Bhende C.N., Mishra S., Panigrahi B.K. Detection and classification of power quality disturbances using S-transform and modular neural network. Electr. Power Syst. Res. 2008, 78:122-128.
    • (2008) Electr. Power Syst. Res. , vol.78 , pp. 122-128
    • Bhende, C.N.1    Mishra, S.2    Panigrahi, B.K.3
  • 25
    • 80755132210 scopus 로고    scopus 로고
    • Input variable selection for feature extraction in classification problems
    • Choi S., Oh J., Choi C.H., Kim C. Input variable selection for feature extraction in classification problems. Signal Process. 2012, 92:636-648.
    • (2012) Signal Process. , vol.92 , pp. 636-648
    • Choi, S.1    Oh, J.2    Choi, C.H.3    Kim, C.4
  • 26
    • 84887014023 scopus 로고    scopus 로고
    • Modified backward feature selection by cross validation
    • Proceedings of the European Symposium on Artificial Neural Networks
    • S. Abe, Modified backward feature selection by cross validation, in: Proceedings of the European Symposium on Artificial Neural Networks, 2005, pp. 163-168.
    • (2005) , pp. 163-168
    • Abe, S.1
  • 27
    • 27744590482 scopus 로고    scopus 로고
    • Eliminating redundancy and irrelevance using a new MLP-based feature selection method
    • Gasca E., Sanchez J.S., Alonso R. Eliminating redundancy and irrelevance using a new MLP-based feature selection method. Pattern Recognit. 2006, 39:313-315.
    • (2006) Pattern Recognit. , vol.39 , pp. 313-315
    • Gasca, E.1    Sanchez, J.S.2    Alonso, R.3
  • 28
    • 77956341862 scopus 로고    scopus 로고
    • Detection and classification of single and combined power quality disturbances using fuzzy systems oriented by particle swarm optimization algorithm
    • Hooshmand R., Enshaee A. Detection and classification of single and combined power quality disturbances using fuzzy systems oriented by particle swarm optimization algorithm. Electr. Power Syst. Res. 2010, 80:1552-1561.
    • (2010) Electr. Power Syst. Res. , vol.80 , pp. 1552-1561
    • Hooshmand, R.1    Enshaee, A.2
  • 29
    • 84893678147 scopus 로고    scopus 로고
    • SVM-KM MATLAB Toolbox.
    • SVM-KM MATLAB Toolbox http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html.
  • 30
    • 48049093694 scopus 로고    scopus 로고
    • Subspace based feature selection for pattern recognition
    • Gunal S., Edizkan R. Subspace based feature selection for pattern recognition. Inf. Sci. 2008, 178:3716-3726.
    • (2008) Inf. Sci. , vol.178 , pp. 3716-3726
    • Gunal, S.1    Edizkan, R.2
  • 32
    • 80955144002 scopus 로고    scopus 로고
    • Optimization techniques for improving power quality data mining using wavelet packet based support vector machine
    • Manimala K., Selvi K., Ahila R. Optimization techniques for improving power quality data mining using wavelet packet based support vector machine. Neurocomputing 2012, 77:36-47.
    • (2012) Neurocomputing , vol.77 , pp. 36-47
    • Manimala, K.1    Selvi, K.2    Ahila, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.